35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ceftriaxone-Resistant Neisseria gonorrhoeae, Japan

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To the Editor: Spread of multidrug-resistant Neisseria gonorrhoeae is a major public health concern. Effective antimicrobial therapy is a key element in gonorrhea control. However, N. gonorrhoeae has developed resistance to multiple classes of antimicrobial drugs, including β-lactams, tetracyclines, and fluoroquinolones ( 1 – 3 ). Even an extended-spectrum oral cephalosporin-resistant, cefixime-resistant N. gonorrhoeae has emerged, and cefixime has now been withdrawn from use in Japan. Best practice treatment is limited to injectable extended-spectrum cephalosporins, such as ceftriaxone and spectinomycin. The emergence of ceftriaxone-resistant N. gonorrhoeae threatens effective disease control. We identified a novel ceftriaxone-resistant N. gonorrhoeae isolated from a 31-year-old female commercial sex worker; MIC of ceftriaxone for this isolate was high (2 µg/mL). The woman visited a clinic in Kyoto for a routine examination for sexually transmitted infections in January 2009. Although she had no obvious symptoms or signs, a throat sample collected on her first visit yielded a positive result for N. gonorrhoeae by the strand displacement amplification test (ProbeTec ET, Becton Dickinson, Franklin Lakes, NJ, USA), but a vaginal sample taken at the same time was negative. After 2 weeks, another throat sample was positive for N. gonorrhoeae when cultured on Thayer-Martin medium, and the patient subsequently received 1 g ceftriaxone intravenously. Her pharyngeal sample was also N. gonorrhoeae positive by strand displacement amplification test on the third visit 2 weeks later, and further ceftriaxone treatment was prescribed. However, a culture for test of cure was not conducted because reinfection was considered. A negative result was finally obtained in April 2009. The culture showed positive reactions in oxidase and catalase tests. Gram staining showed gram-negative diplococci. The ID-test HN-20 Rapid system (Nissui, Tokyo, Japan) classified the bacterium as N. gonorrhoeae. Susceptibility was determined by the agar dilution method ( 4 ). For this strain, named H041, MIC of ceftriaxone was high (2 µg/mL), and the strain was highly resistant to penicillin G (4 µg/mL), cefixime (8 µg/mL), and levofloxacin (32 µg/mL). However, it demonstrated susceptibility to spectinomycin (16 µg/mL) and reduced susceptibility to azithromycin (0.5 µg/mL). To characterize the ceftriaxone-resistant N. gonorrhoeae H041, multilocus sequence typing characterized the strain as ST7363 ( 5 ), which is the predominant sequence type (ST) among cefixime-resistant clones ( 6 ). N. gonorrhoea multiantigen sequence typing (NG-MAST) was also performed ( 7 ). The NG-MAST strategy uses 2 genes, por and tbpB, for porin and a transferrin-binding protein, respectively. NG-MAST indicated that the strain H041 was ST4220 and contained the por2594 allele and the tbpB10 allele. NG-MAST 4220 is a novel ST. However, the tbpB10 allele is the most frequently observed allele (76.5%) among multilocus sequence typing-ST7363 N. gonorrhoeae strains (n = 81) (M. Ohnishi, unpub. data). Molecular typing suggested that the novel ceftriaxone-resistant N. gonorrhoeae, H041, is closely related to the ST7363 cefixime-resistant N. gonorrhoeae. Therefore, we compared SpeI-digested genomic DNA banding patterns of strain H041 with those of other N. gonorrhoeae strains by using pulsed-field gel electrophoresis as described ( 8 ). Four ST7363 strains, including N. gonorrhoeae H041, and 4 ST1901 strains (another major ST among cefixime-resistant N. gonorrhoeae strains) ( 6 ) were analyzed. The banding pattern of SpeI digested H041 genomic DNA was similar to that of other ST7363 strains and indistinguishable from that of cefixime-resistant but ceftriaxone-susceptible NG0207 (Figure). Figure Pulsed-field gel electrophoresis patterns of ceftriaxone-resistant Neisseria gonorrhoeae strain H041 and other multilocus sequence typing (MLST) ST7363 and ST1901 strains. SpeI-digested genomic DNA from ceftriaxone-resistant N. gonorrhoeae H041, 3 of the MLST ST7363 strains and 4 of the MLST ST1901 strains were analyzed by pulsed-field gel electrophoresis. A lambda ladder standard (Bio-Rad, Hercules, CA, USA) was used as a molecular size marker. We describe the emergence of ceftriaxone-resistant N. gonorrhoeae, isolated from a pharyngeal specimen from a female commercial sex worker. At 2 µg/mL, the MIC was 4-fold higher than that of the previously reported ceftriaxone nonsusceptible strain ( 9 ). Our susceptibility testing suggests that only azithromycin and spectinomycin are effective drugs for treating this strain. In this case, eradication was successful, although N. gonorrhoeae colonization of the pharynx may just be tempory because the pharynx is not an ideal site for N. gonorrhoeae growth. From the routine examinations of commercial sex workers during January–March 2009, 40 N. gonorrhoeae were isolated in the clinic, but no other ceftriaxone-resistant strains were isolated. There is no evidence of dissemination of this strain in Kyoto. Three independent molecular subtyping methods indicated that the ceftriaxone-resistant H041 strain was N. gonorrhoeae, and it might originate from an ST7363 cefixime-resistant N. gonorrhoeae clone. There are several possible mechanisms for the acquisition of resistance, including formation of a new mosaic type penA allele as penA-X cefixime resistance and acquisition of an extended-spectrum β-lactamase gene. The H041 strain did not produce β-lactamase in a nitrocephin test. Further molecular analysis is needed to elucidate the precise mechanism of the ceftriaxone resistance of the H041 strain. The emergence of ceftriaxone-resistant N. gonorrhoeae raises concerns for controlling gonorrhea because ceftriaxone is widely recommended and the first-line treatment for gonorrhea around the world. N. gonorrhoeae has a potential to gain an extraordinarily high MIC to ceftriaxone. Surveillance for ceftriaxone-resistant N. gonorrhoeae should be strengthened.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area.

          In large metropolitan areas, which typically have the highest rates of gonorrhea, the identification of chains of transmission by use of partner notification is problematic, and there is an increasing interest in applying molecular approaches, which would require new discriminatory high-throughput procedures for recognizing clusters of indistinguishable gonococci, procedures that identify local chains of transmission. Sequencing of internal fragments of 2 highly polymorphic loci, from 436 isolates recovered in London during a 3-month period, identified clusters of antibiotic-resistant and antibiotic-susceptible isolates with indistinguishable genotypes, the vast majority of which were also identical or closely related by other methods, and defined groups of individuals who typically had similar demographic characteristics. This discriminatory sequence-based approach produces unambiguous data that easily can be compared via the Internet and appears to be suitable for the identification of linked cases of gonorrhea and the timely identification of transmission of antibiotic-resistant strains, even within large cities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae.

            Globally, antimicrobial resistance (AMR) in Neisseria gonorrhoeae is increasing in prevalence, both within and across antibiotic classes, including extended-spectrum cephalosporins, raising concerns that gonorrhea may become untreatable in certain circumstances. The AMR surveillance that is essential to optimize standard treatments is often lacking or of poor quality in countries with high disease rates. Recent initiatives by the WHO to enhance global AMR surveillance that focus on multidrug- and extensively drug-resistant N. gonorrhoeae through revision of surveillance standards and use of a new panel of N. gonorrhoeae control strains are described. Keys to meeting these new challenges posed by gonococcal AMR remain the reduction in global burden of gonorrhea combined with implementation of wider strategies for general AMR control, and better understanding of mechanisms of emergence and spread of AMR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emerging antimicrobial resistance in Neisseria gonorrhoeae: urgent need to strengthen prevention strategies.

              Prevention and control of gonorrhea is an important public health concern due to the high burden of disease, the recent increase in reported infection rates, and the reproductive and economic consequences of infection. Effective antibiotic treatment is one essential component of an integrated approach to gonorrhea control. Over the past 60 years, however, development of resistance in Neisseria gonorrhoeae to multiple antimicrobial classes challenges this component of gonorrhea control. An integrated, comprehensive prevention strategy should include enhancement of national and international surveillance systems to monitor antimicrobial resistance and new strategies to maximize the benefit and prolong the utility of antimicrobials, including combination regimens, implementation of screening recommendations for individuals at high risk for infection, and the assurance of prompt and effective treatment for infected persons and their sexual partners. Progress in controlling the epidemic and avoiding a resurgence as treatment options wane will require careful attention to all components of a comprehensive prevention strategy.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                January 2011
                : 17
                : 1
                : 148-149
                Affiliations
                [1]Author affiliations: National Institute of Infectious Diseases, Tokyo, Japan (M. Ohnishi, S. Nakayama, H. Watanabe);
                [2]Mitsubishi Chemical Medience Corporation, Tokyo (T. Saika); Hoshina Clinic, Kyoto, Japan (S. Hoshina);
                [3]Kyoto Prefectural University of Medicine, Kyoto (K. Iwasaku, J. Kitawaki)
                Author notes
                Address for correspondence: Makoto Ohnishi, Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan, email: ohnishi7@ 123456nih.go.jp
                Article
                10-0397
                10.3201/eid1701.100397
                3204624
                21192886
                8bf6813a-7af3-4a06-8fe4-389d3a16cb97
                History
                Categories
                Letter

                Infectious disease & Microbiology
                ceftriaxone,sexually transmitted diseases,sex workers,std,letter,gonorrhea,japan,antimicrobial resistance,neisseria gonorrhoeae,bacteria

                Comments

                Comment on this article