11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adaptive frequency-based modeling of whole-brain oscillations: Predicting regional vulnerability and hazardousness rates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Whole-brain computational modeling based on structural connectivity has shown great promise in successfully simulating fMRI BOLD signals with temporal coactivation patterns that are highly similar to empirical functional connectivity patterns during resting state. Importantly, previous studies have shown that spontaneous fluctuations in coactivation patterns of distributed brain regions have an inherent dynamic nature with regard to the frequency spectrum of intrinsic brain oscillations. In this modeling study, we introduced frequency dynamics into a system of coupled oscillators, where each oscillator represents the local mean-field model of a brain region. We first showed that the collective behavior of interacting oscillators reproduces previously shown features of brain dynamics. Second, we examined the effect of simulated lesions in gray matter by applying an in silico perturbation protocol to the brain model. We present a new approach to map the effects of vulnerability in brain networks and introduce a measure of regional hazardousness based on mapping of the degree of divergence in a feature space.

          Author Summary

          Computational modeling of the brain enables us to test different hypotheses without any experimental complication, and it provides us with a platform for improving our understanding of different brain mechanisms. In this study, we proposed a new macroscopic computational model of the brain oscillations for resting-state fMRI. Optimizing model parameters using empirical data was performed based on several measures of functional connectivity and instantaneous coherence. We simulated the effect of malfunction in a brain region by changing that region’s dynamics to evoke noisy behavior. Together with presenting a new paradigm for local vulnerability mapping in the brain connectome, we evaluated the hazard rate induced after perturbing a brain region by measuring divergence of the perturbed model from the original model in feature space. The analysis of hazard rates induced by primary failures of individual brain regions provides relevant insights not only into the size of the damage inflicted on the connectome by a particular failure, but also into the potential origins of disease. Furthermore, we proposed a spatial brain map that is associated with the regional hazardousness rates, which is in good agreement with the known pathophysiologic roles of malfunction in different functional systems in the brain.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Rich-club organization of the human connectome.

          The human brain is a complex network of interlinked regions. Recent studies have demonstrated the existence of a number of highly connected and highly central neocortical hub regions, regions that play a key role in global information integration between different parts of the network. The potential functional importance of these "brain hubs" is underscored by recent studies showing that disturbances of their structural and functional connectivity profile are linked to neuropathology. This study aims to map out both the subcortical and neocortical hubs of the brain and examine their mutual relationship, particularly their structural linkages. Here, we demonstrate that brain hubs form a so-called "rich club," characterized by a tendency for high-degree nodes to be more densely connected among themselves than nodes of a lower degree, providing important information on the higher-level topology of the brain network. Whole-brain structural networks of 21 subjects were reconstructed using diffusion tensor imaging data. Examining the connectivity profile of these networks revealed a group of 12 strongly interconnected bihemispheric hub regions, comprising the precuneus, superior frontal and superior parietal cortex, as well as the subcortical hippocampus, putamen, and thalamus. Importantly, these hub regions were found to be more densely interconnected than would be expected based solely on their degree, together forming a rich club. We discuss the potential functional implications of the rich-club organization of the human connectome, particularly in light of its role in information integration and in conferring robustness to its structural core.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification and Classification of Hubs in Brain Networks

            Brain regions in the mammalian cerebral cortex are linked by a complex network of fiber bundles. These inter-regional networks have previously been analyzed in terms of their node degree, structural motif, path length and clustering coefficient distributions. In this paper we focus on the identification and classification of hub regions, which are thought to play pivotal roles in the coordination of information flow. We identify hubs and characterize their network contributions by examining motif fingerprints and centrality indices for all regions within the cerebral cortices of both the cat and the macaque. Motif fingerprints capture the statistics of local connection patterns, while measures of centrality identify regions that lie on many of the shortest paths between parts of the network. Within both cat and macaque networks, we find that a combination of degree, motif participation, betweenness centrality and closeness centrality allows for reliable identification of hub regions, many of which have previously been functionally classified as polysensory or multimodal. We then classify hubs as either provincial (intra-cluster) hubs or connector (inter-cluster) hubs, and proceed to show that lesioning hubs of each type from the network produces opposite effects on the small-world index. Our study presents an approach to the identification and classification of putative hub regions in brain networks on the basis of multiple network attributes and charts potential links between the structural embedding of such regions and their functional roles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Time-frequency dynamics of resting-state brain connectivity measured with fMRI.

              Most studies of resting-state functional connectivity using fMRI employ methods that assume temporal stationarity, such as correlation and data-driven decompositions computed across the duration of the scan. However, evidence from both task-based fMRI studies and animal electrophysiology suggests that functional connectivity may exhibit dynamic changes within time scales of seconds to minutes. In the present study, we investigated the dynamic behavior of resting-state connectivity across the course of a single scan, performing a time-frequency coherence analysis based on the wavelet transform. We focused on the connectivity of the posterior cingulate cortex (PCC), a primary node of the default-mode network, examining its relationship with both the "anticorrelated" ("task-positive") network as well as other nodes of the default-mode network. It was observed that coherence and phase between the PCC and the anticorrelated network was variable in time and frequency, and statistical testing based on Monte Carlo simulations revealed the presence of significant scale-dependent temporal variability. In addition, a sliding-window correlation procedure identified other regions across the brain that exhibited variable connectivity with the PCC across the scan, which included areas previously implicated in attention and salience processing. Although it is unclear whether the observed coherence and phase variability can be attributed to residual noise or modulation of cognitive state, the present results illustrate that resting-state functional connectivity is not static, and it may therefore prove valuable to consider measures of variability, in addition to average quantities, when characterizing resting-state networks. Copyright (c) 2009 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Netw Neurosci
                Netw Neurosci
                netn
                Network Neuroscience
                MIT Press (One Rogers Street, Cambridge, MA 02142-1209USAjournals-info@mit.edu )
                2472-1751
                2019
                2019
                : 3
                : 4 , Focus Feature: Linking Experimental and Computational Connectomics
                : 1094-1120
                Affiliations
                [1]Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
                [2]Dutch Connectome Lab, Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research, VU Amsterdam, Amsterdam, The Netherlands
                [3]Department of Clinical Genetics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
                [4]Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                * Corresponding Author: Neda.Kaboodvand@ 123456ki.se

                Handling Editor: Daniele Marinazzo

                Author information
                https://orcid.org/0000-0002-0264-6839
                Article
                netn_a_00104
                10.1162/netn_a_00104
                6779267
                31637340
                8ba8e165-e60c-4e11-94d0-7464027f3738
                © 2019 Massachusetts Institute of Technology

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.

                History
                : 21 February 2019
                : 24 July 2019
                Page count
                Figures: 6, Equations: 7, References: 125, Pages: 27
                Funding
                Funded by: Swedish Research Council, FundRef http://dx.doi.org/10.13039/501100004359;
                Award ID: 2016-03352
                Funded by: Swedish e-Science Research Center;
                Categories
                Research Articles
                Custom metadata
                Kaboodvand, N., van den Heuvel, M. P., & Fransson, P. (2019). Adaptive frequency-based modeling of whole-brain oscillations: Predicting regional vulnerability and hazardousness rates. Network Neuroscience, 3(4), 1094–1120. https://doi.org/10.1162/netn_a_00104

                resting-state fmri,whole-brain network modeling,dynamical systems,adaptive frequency,in silico perturbation,vulnerability

                Comments

                Comment on this article