32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neglected role of hydrogen sulfide in sulfur mustard poisoning: Keap1 S-sulfhydration and subsequent Nrf2 pathway activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sulfur mustard (SM) is a chemical warfare agent and a terrorism choice that targets various organs and tissues, especially lung tissues. Its toxic effects are tightly associated with oxidative stress. The signaling molecule hydrogen sulfide (H 2S) protects the lungs against oxidative stress and activates the NF-E2 p45-related factor 2 (Nrf2) pathway. Here, we sought to establish whether endogenous H 2S plays a role in SM induced lesion in mouse lungs and lung cells and whether endogenous H 2S plays the role through Nrf2 pathway to protect against SM-induced oxidative damage. Furthermore, we also explored whether activation of Nrf2 by H 2S involves sulfhydration of Kelch-like ECH-associated protein-1 (Keap1). Using a mouse model of SM-induced lung injury, we demonstrated that SM-induced attenuation of the sulfide concentration was prevented by NaHS. Concomitantly, NaHS attenuates SM-induced oxidative stress. We also found that H 2S enhanced Nrf2 nuclear translocation, and stimulated expression of Nrf2-targeted downstream protein and mRNA levels. Incubation of the lung cells with NaHS decreased SM-induced ROS production. Furthermore, we also found that H 2S S-sulfhydrated Keap1, which induced Nrf2 dissociation from Keap1, and enhanced Nrf2 nuclear translocation. Our data indicate that H 2S is a critical, however, being long neglected signal molecule in SM-induced lung injury.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems.

          Hydrogen sulfide (H2S), a gaseous species produced by both bacteria and higher eukaryotic organisms, including mammalian vertebrates, has attracted attention in recent years for its contributions to human health and disease. H2S has been proposed as a cytoprotectant and gasotransmitter in many tissue types, including mediating vascular tone in blood vessels as well as neuromodulation in the brain. The molecular mechanisms dictating how H2S affects cellular signaling and other physiological events remain insufficiently understood. Furthermore, the involvement of H2S in metal-binding interactions and formation of related RSS such as sulfane sulfur may contribute to other distinct signaling pathways. Owing to its widespread biological roles and unique chemical properties, H2S is an appealing target for chemical biology approaches to elucidate its production, trafficking, and downstream function. In this context, reaction-based fluorescent probes offer a versatile set of screening tools to visualize H2S pools in living systems. Three main strategies used in molecular probe development for H2S detection include azide and nitro group reduction, nucleophilic attack, and CuS precipitation. Each of these approaches exploits the strong nucleophilicity and reducing potency of H2S to achieve selectivity over other biothiols. In addition, a variety of methods have been developed for the detection of other reactive sulfur species (RSS), including sulfite and bisulfite, as well as sulfane sulfur species and related modifications such as S-nitrosothiols. Access to this growing chemical toolbox of new molecular probes for H2S and related RSS sets the stage for applying these developing technologies to probe reactive sulfur biology in living systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrogen Sulfide Induces Keap1 S-sulfhydration and Suppresses Diabetes-Accelerated Atherosclerosis via Nrf2 Activation.

            Hydrogen sulfide (H2S) has been shown to have powerful antioxidative and anti-inflammatory properties that can regulate multiple cardiovascular functions. However, its precise role in diabetes-accelerated atherosclerosis remains unclear. We report here that H2S reduced aortic atherosclerotic plaque formation with reduction in superoxide (O2 (-)) generation and the adhesion molecules in streptozotocin (STZ)-induced LDLr(-/-) mice but not in LDLr(-/-)Nrf2(-/-) mice. In vitro, H2S inhibited foam cell formation, decreased O2 (-) generation, and increased nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and consequently heme oxygenase 1 (HO-1) expression upregulation in high glucose (HG) plus oxidized LDL (ox-LDL)-treated primary peritoneal macrophages from wild-type but not Nrf2(-/-) mice. H2S also decreased O2 (-) and adhesion molecule levels and increased Nrf2 nuclear translocation and HO-1 expression, which were suppressed by Nrf2 knockdown in HG/ox-LDL-treated endothelial cells. H2S increased S-sulfhydration of Keap1, induced Nrf2 dissociation from Keap1, enhanced Nrf2 nuclear translocation, and inhibited O2 (-) generation, which were abrogated after Keap1 mutated at Cys151, but not Cys273, in endothelial cells. Collectively, H2S attenuates diabetes-accelerated atherosclerosis, which may be related to inhibition of oxidative stress via Keap1 sulfhydrylation at Cys151 to activate Nrf2 signaling. This may provide a novel therapeutic target to prevent atherosclerosis in the context of diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              H2S: A Novel Gasotransmitter that Signals by Sulfhydration.

              Hydrogen sulfide (H2S) is a member of the growing family of gasotransmitters. Once regarded as a noxious molecule predominantly present in the atmosphere, H2S is now known to be synthesized endogenously in mammals. H2S participates in a myriad of physiological processes ranging from regulation of blood pressure to neuroprotection. Its chemical nature precludes H2S from being stored in vesicles and acting on receptor proteins in the fashion of other chemical messengers. Thus, novel cellular mechanisms have evolved to mediate its effects. This review focuses on sulfhydration (or persulfidation), which appears to be the principal post-translational modification elicited by H2S.
                Bookmark

                Author and article information

                Contributors
                sunmx1985@163.com
                kaixiaocn@163.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                25 August 2017
                25 August 2017
                2017
                : 7
                : 9433
                Affiliations
                [1 ]ISNI 0000 0004 0369 1660, GRID grid.73113.37, , Lab of Toxicology & Pharmacology, Faculty of Tropical Medicine and Public Health, Second Military Medical University, ; Shanghai, 200433 China
                [2 ]ISNI 0000 0004 1771 3349, GRID grid.415954.8, , China-Japan Union Hospital of Jilin University, ; Changchun, 130033 China
                Article
                9648
                10.1038/s41598-017-09648-6
                5572733
                28842592
                8b59451e-f0eb-4112-8e04-652c90610185
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 September 2016
                : 28 July 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article