14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Disposable masks: Disinfection and sterilization for reuse, and non-certified manufacturing, in the face of shortages during the COVID-19 pandemic

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlight

          • The reuse of disposable masks is limited in terms of the number of uses and unwanted effects.

          • The use of H 2O 2 is considered the most effective method for industrial disinfection of Face Masks.

          • The use of hot air is considered the most effective method for home disinfection of Face Masks.

          • Surgical masks are slightly less effective than PPE masks.

          • Homemade or non-certified disposable masks have a very low effectiveness compared to certified ones.

          Abstract

          The COVID-19 pandemic is posing a huge global health threat. To deal with this problem, in addition to research and work in the medical field, the main health measures being taken in the workplace and at home involve the establishment of safety protocols, which include distance measures, hygiene and the use of personal protective equipment, such as masks, etc. The WHO still does not recommend the use of masks for the general population. However, their successful use in China, South Korea and the Czech Republic has encouraged their widespread use, and the shortage that already existed. This has caused that companies and individuals are looking at the best way to reuse them, and to manufacture, homemade or not, of non-certified masks. This paper is based on two objectives: to consult the scientific literature to identify the main strategies for disinfecting them, and to determine the effectiveness of non-certified disposable masks. A rapid review has been conducted in which the main publications and other information available online have been analyzed. Results showed that the most promising methods are those that use hydrogen peroxide vapor, ultraviolet radiation, moist heat, dry heat and ozone gas. Soapy water, alcohol, bleach immersion, ethylene oxide, ionizing radiation, microwave, high temperature, autoclave or steam are not fully recommended. Regarding the effectiveness of surgical masks compared to PPE, the former have been seen to be slightly less effective than PPE. As for other types of masks the effectiveness of homemade or non-certified masks is very low.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

          To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rational use of face masks in the COVID-19 pandemic

            Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that caused coronavirus disease 2019 (COVID-19), the use of face masks has become ubiquitous in China and other Asian countries such as South Korea and Japan. Some provinces and municipalities in China have enforced compulsory face mask policies in public areas; however, China's national guideline has adopted a risk-based approach in offering recommendations for using face masks among health-care workers and the general public. We compared face mask use recommendations by different health authorities (panel ). Despite the consistency in the recommendation that symptomatic individuals and those in health-care settings should use face masks, discrepancies were observed in the general public and community settings.1, 2, 3, 4, 5, 6, 7, 8 For example, the US Surgeon General advised against buying masks for use by healthy people. One important reason to discourage widespread use of face masks is to preserve limited supplies for professional use in health-care settings. Universal face mask use in the community has also been discouraged with the argument that face masks provide no effective protection against coronavirus infection. Panel Recommendations on face mask use in community settings WHO 1 • If you are healthy, you only need to wear a mask if you are taking care of a person with suspected SARS-CoV-2 infection. China 2 • People at moderate risk* of infection: surgical or disposable mask for medical use. • People at low risk† of infection: disposable mask for medical use. • People at very low risk‡ of infection: do not have to wear a mask or can wear non-medical mask (such as cloth mask). Hong Kong 3 • Surgical masks can prevent transmission of respiratory viruses from people who are ill. It is essential for people who are symptomatic (even if they have mild symptoms) to wear a surgical mask. • Wear a surgical mask when taking public transport or staying in crowded places. It is important to wear a mask properly and practice good hand hygiene before wearing and after removing a mask. Singapore 4 • Wear a mask if you have respiratory symptoms, such as a cough or runny nose. Japan 5 • The effectiveness of wearing a face mask to protect yourself from contracting viruses is thought to be limited. If you wear a face mask in confined, badly ventilated spaces, it might help avoid catching droplets emitted from others but if you are in an open-air environment, the use of face mask is not very efficient. USA 6 • Centers for Disease Control and Prevention does not recommend that people who are well wear a face mask (including respirators) to protect themselves from respiratory diseases, including COVID-19. • US Surgeon General urged people on Twitter to stop buying face masks. UK 7 • Face masks play a very important role in places such as hospitals, but there is very little evidence of widespread benefit for members of the public. Germany 8 • There is not enough evidence to prove that wearing a surgical mask significantly reduces a healthy person's risk of becoming infected while wearing it. According to WHO, wearing a mask in situations where it is not recommended to do so can create a false sense of security because it might lead to neglecting fundamental hygiene measures, such as proper hand hygiene. However, there is an essential distinction between absence of evidence and evidence of absence. Evidence that face masks can provide effective protection against respiratory infections in the community is scarce, as acknowledged in recommendations from the UK and Germany.7, 8 However, face masks are widely used by medical workers as part of droplet precautions when caring for patients with respiratory infections. It would be reasonable to suggest vulnerable individuals avoid crowded areas and use surgical face masks rationally when exposed to high-risk areas. As evidence suggests COVID-19 could be transmitted before symptom onset, community transmission might be reduced if everyone, including people who have been infected but are asymptomatic and contagious, wear face masks. Recommendations on face masks vary across countries and we have seen that the use of masks increases substantially once local epidemics begin, including the use of N95 respirators (without any other protective equipment) in community settings. This increase in use of face masks by the general public exacerbates the global supply shortage of face masks, with prices soaring, 9 and risks supply constraints to frontline health-care professionals. As a response, a few countries (eg, Germany and South Korea) banned exportation of face masks to prioritise local demand. 10 WHO called for a 40% increase in the production of protective equipment, including face masks. 9 Meanwhile, health authorities should optimise face mask distribution to prioritise the needs of frontline health-care workers and the most vulnerable populations in communities who are more susceptible to infection and mortality if infected, including older adults (particularly those older than 65 years) and people with underlying health conditions. People in some regions (eg, Thailand, China, and Japan) opted for makeshift alternatives or repeated usage of disposable surgical masks. Notably, improper use of face masks, such as not changing disposable masks, could jeopardise the protective effect and even increase the risk of infection. Consideration should also be given to variations in societal and cultural paradigms of mask usage. The contrast between face mask use as hygienic practice (ie, in many Asian countries) or as something only people who are unwell do (ie, in European and North American countries) has induced stigmatisation and racial aggravations, for which further public education is needed. One advantage of universal use of face masks is that it prevents discrimination of individuals who wear masks when unwell because everybody is wearing a mask. It is time for governments and public health agencies to make rational recommendations on appropriate face mask use to complement their recommendations on other preventive measures, such as hand hygiene. WHO currently recommends that people should wear face masks if they have respiratory symptoms or if they are caring for somebody with symptoms. Perhaps it would also be rational to recommend that people in quarantine wear face masks if they need to leave home for any reason, to prevent potential asymptomatic or presymptomatic transmission. In addition, vulnerable populations, such as older adults and those with underlying medical conditions, should wear face masks if available. Universal use of face masks could be considered if supplies permit. In parallel, urgent research on the duration of protection of face masks, the measures to prolong life of disposable masks, and the invention on reusable masks should be encouraged. Taiwan had the foresight to create a large stockpile of face masks; other countries or regions might now consider this as part of future pandemic plans. © 2020 Sputnik/Science Photo Library 2020 Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              N95 Respirators vs Medical Masks for Preventing Influenza Among Health Care Personnel

              Clinical studies have been inconclusive about the effectiveness of N95 respirators and medical masks in preventing health care personnel (HCP) from acquiring workplace viral respiratory infections.
                Bookmark

                Author and article information

                Contributors
                Journal
                Saf Sci
                Saf Sci
                Safety Science
                Published by Elsevier Ltd.
                0925-7535
                0925-7535
                13 May 2020
                13 May 2020
                : 104830
                Affiliations
                School of Industrial Engineering, Universidad de Málaga, C/Dr. Ortiz Ramos s/n (Teatinos), 29071, Málaga, Spain
                Author notes
                [* ]Corresponding author. juro@ 123456uma.es
                Article
                S0925-7535(20)30227-7 104830
                10.1016/j.ssci.2020.104830
                7218384
                32406406
                8b403d93-d373-45a8-8f2e-2773612f73e8
                © 2020 Published by Elsevier Ltd.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 24 April 2020
                : 10 May 2020
                Categories
                Article

                ppe,sars-cov-2,coronavirus,filtering facepiece respirators,decontamination,reuse

                Comments

                Comment on this article