36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serological Evidence of Backyard Pig Exposure to Highly Pathogenic Avian Influenza H5N8 Virus during 2016–2017 Epizootic in France

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In autumn/winter 2016–2017, HPAI-H5N8 viruses belonging to the A/goose/Guandong/1/1996 (Gs/Gd) lineage, clade 2.3.4.4b, were responsible for outbreaks in domestic poultry in Europe, and veterinarians were requested to reinforce surveillance of pigs bred in HPAI-H5Nx confirmed mixed herds. In this context, ten pig herds were visited in southwestern France from December 2016 to May 2017 and serological analyses for influenza A virus (IAV) infections were carried out by ELISA and hemagglutination inhibition assays. In one herd, one backyard pig was shown to have produced antibodies directed against a virus bearing a H5 from clade 2.3.4.4b, suggesting it would have been infected naturally after close contact with HPAI-H5N8 contaminated domestic ducks. Whereas pigs and other mammals, including humans, may have limited sensitivity to HPAI-H5 clade 2.3.4.4b, this information recalls the importance of implementing appropriate biosecurity measures in pig and poultry farms to avoid IAV interspecies transmission, a prerequisite for co-infections and subsequent emergence of new viral genotypes whose impact on both animal and human health cannot be predicted.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Host and viral determinants of influenza A virus species specificity

          Influenza A viruses cause pandemics when they cross between species and an antigenically novel virus acquires the ability to infect and transmit between these new hosts. The timing of pandemics is currently unpredictable but depends on ecological and virological factors. The host range of an influenza A virus is determined by species-specific interactions between virus and host cell factors. These include the ability to bind and enter cells, to replicate the viral RNA genome within the host cell nucleus, to evade host restriction factors and innate immune responses and to transmit between individuals. In this Review, we examine the host barriers that influenza A viruses of animals, especially birds, must overcome to initiate a pandemic in humans and describe how, on crossing the species barrier, the virus mutates to establish new interactions with the human host. This knowledge is used to inform risk assessments for future pandemics and to identify virus-host interactions that could be targeted by novel intervention strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013–2014

            Aim The A/goose/Guangdong/1/96-like hemagglutinin (HA) genes of highly pathogenic avian influenza (HPAI) A(H5) viruses have continued to rapidly evolve since the most recent update to the H5 clade nomenclature by the WHO/OIE/FAO H5N1 Evolution Working Group. New clades diverging beyond established boundaries need to be identified and designated accordingly. Method Hemagglutinin sequences deposited in publicly accessible databases up to December 31, 2014, were analyzed by phylogenetic and average pairwise distance methods to identify new clades that merit nomenclature changes. Results Three new clade designations were recommended based on division of clade 2·1·3·2a (Indonesia), 2·2·1 (Egypt), and 2·3·4 (widespread detection in Asia, Europe, and North America) that includes newly emergent HPAI virus subtypes H5N2, H5N3, H5N5, H5N6, and H5N8. Conclusion Continued global surveillance for HPAI A(H5) viruses in all host species and timely reporting of sequence data will be critical to quickly identify new clades and assess their potential impact on human and animal health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses

              A fundamental goal in the biological sciences is the definition of groups of organisms based on evolutionary history and the naming of those groups. For influenza A viruses (IAVs) in swine, understanding the hemagglutinin (HA) genetic lineage of a circulating strain aids in vaccine antigen selection and allows for inferences about vaccine efficacy. Previous reporting of H1 virus HA in swine relied on colloquial names, frequently with incriminating and stigmatizing geographic toponyms, making comparisons between studies challenging. To overcome this, we developed an adaptable nomenclature using measurable criteria for historical and contemporary evolutionary patterns of H1 global swine IAVs. We also developed a web-accessible tool that classifies viruses according to this nomenclature. This classification system will aid agricultural production and pandemic preparedness through the identification of important changes in swine IAVs and provides terminology enabling discussion of swine IAVs in a common context among animal and human health initiatives.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Pathogens
                Pathogens
                pathogens
                Pathogens
                MDPI
                2076-0817
                18 May 2021
                May 2021
                : 10
                : 5
                : 621
                Affiliations
                [1 ]Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; stephane.gorin@ 123456anses.fr (S.G.); stephane.queguiner@ 123456anses.fr (S.Q.); gaelle.simon@ 123456anses.fr (G.S.)
                [2 ]Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; audrey.schmitz@ 123456anses.fr (A.S.); francois-xavier.briand@ 123456anses.fr (F.-X.B.); eric.niqueux@ 123456anses.fr (É.N.); nicolas.eterradossi@ 123456anses.fr (N.E.)
                [3 ]SPF Pig Production and Experimentation, Ploufragan-Plouzané-Niort Laboratory, French Agency for food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; frederic.paboeuf@ 123456anses.fr
                [4 ]Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; axelle.scoizec@ 123456anses.fr (A.S.); sophie.lebouquin-leneveu@ 123456anses.fr (S.L.B.-L.)
                Author notes
                Author information
                https://orcid.org/0000-0002-2223-7071
                https://orcid.org/0000-0002-8094-9368
                https://orcid.org/0000-0003-1099-5075
                Article
                pathogens-10-00621
                10.3390/pathogens10050621
                8158469
                34070190
                8ad383c3-1fc0-46ea-b102-5161c20aecf7
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 26 March 2021
                : 14 May 2021
                Categories
                Case Report

                poultry,swine,influenza outbreak,mixed herd,hemagglutination inhibition test

                Comments

                Comment on this article