10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A 2-decade (1988–2009) record of diatom fluxes in the Mauritanian coastal upwelling: impact of low-frequency forcing and a two-step shift in the species composition

      , ,
      Biogeosciences
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Eastern boundary upwelling ecosystems (EBUEs) are among the most productive marine regions in the world's oceans. Understanding the degree of interannual to decadal variability in the Mauritania upwelling system is crucial for the prediction of future changes of primary productivity and carbon sequestration in the Canary Current EBUE as well as in similar environments. A multiyear sediment trap experiment was conducted at the mooring site CBmeso (“Cape Blanc mesotrophic”, ca. 20∘ N, ca. 20∘40′ W) in the highly productive coastal waters off Mauritania. Here, we present results on fluxes of diatoms and the species-specific composition of the assemblage for the time interval between March 1988 and June 2009. The temporal dynamics of diatom populations allows the proposal of three main intervals: (i) early 1988–late 1996, (ii) 1997–1999, and (iii) early 2002–mid 2009. The Atlantic Multidecadal Oscillation (AMO) appears to be an important driver of the long-term dynamics of diatom population. The long-term AMO-driven trend is interrupted by the occurrence of the strong 1997 El Niño–Southern Oscillation (ENSO). The extraordinary shift in the relative abundance of benthic diatoms in May 2002 suggests the strengthening of offshore advective transport within the uppermost layer of filament waters and in the subsurface and in deeper and bottom-near layers. It is hypothesized that the dominance of benthic diatoms was the response of the diatom community to the intensification of the slope and shelf poleward undercurrents. This dominance followed the intensification of the warm phase of AMO and the associated changes of the Atlantic Meridional Overturning Circulation. Transported valves (siliceous remains) from shallow Mauritanian coastal waters into the bathypelagic should be considered for the calculation and model experiments of bathy- and pelagic nutrients budgets (especially Si), the burial of diatoms, and the paleoenvironmental signal preserved in downcore sediments. Additionally, our 1988–2009 data set contributes to the characterization of the impact of low-frequency climate forcings in the northeastern Atlantic and will be especially helpful for establishing the scientific basis for forecasting and modeling future states of the Canary Current EBUE and its decadal changes.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: not found
          • Article: not found

          A signature of persistent natural thermohaline circulation cycles in observed climate

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global climate change and intensification of coastal ocean upwelling.

            A Bakun (1990)
            A mechanism exists whereby global greenhouse warning could, by intensifying the alongshore wind stress on the ocean surface, lead to acceleration of coastal upwelling. Evidence from several different regions suggests that the major coastal upwelling systems of the world have been growing in upwelling intensity as greenhouse gases have accumulated in the earth's atmosphere. Thus the cool foggy summer conditions that typify the coastlands of northern California and other similar upwelling regions might, under global warming, become even more pronounced. Effects of enhanced upwelling on the marine ecosystem are uncertain but potentially dramatic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Decadal trends in the north atlantic oscillation: regional temperatures and precipitation.

              J Hurrell (1995)
              Greenland ice-core data have revealed large decadal climate variations over the North Atlantic that can be related to a major source of low-frequency variability, the North Atlantic Oscillation. Over the past decade, the Oscillation has remained in one extreme phase during the winters, contributing significantly to the recent wintertime warmth across Europe and to cold conditions in the northwest Atlantic. An evaluation of the atmospheric moisture budget reveals coherent large-scale changes since 1980 that are linked to recent dry conditions over southern Europe and the Mediterranean, whereas northern Europe and parts of Scandinavia have generally experienced wetter than normal conditions.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Biogeosciences
                Biogeosciences
                Copernicus GmbH
                1726-4189
                2021
                March 18 2021
                : 18
                : 5
                : 1873-1891
                Article
                10.5194/bg-18-1873-2021
                8a4af95d-8600-46be-8d68-18ba381e56d5
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article