51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules.

          DNA analogues are currently being intensely investigated owing to their potential as gene-targeted drugs. Furthermore, their properties and interaction with DNA and RNA could provide a better understanding of the structural features of natural DNA that determine its unique chemical, biological and genetic properties. We recently designed a DNA analogue, PNA, in which the backbone is structurally homomorphous with the deoxyribose backbone and consists of N-(2-aminoethyl)glycine units to which the nucleobases are attached. We showed that PNA oligomers containing solely thymine and cytosine can hybridize to complementary oligonucleotides, presumably by forming Watson-Crick-Hoogsteen (PNA)2-DNA triplexes, which are much more stable than the corresponding DNA-DNA duplexes, and bind to double-stranded DNA by strand displacement. We report here that PNA containing all four natural nucleobases hybridizes to complementary oligonucleotides obeying the Watson-Crick base-pairing rules, and thus is a true DNA mimic in terms of base-pair recognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria

            Background Bacterial vaginosis (BV) is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV. Methodology/Principal Findings Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel’s clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs) significantly associated with each of the four Amsel’s criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV. Conclusions/Significance The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain) diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased incidence of BV in Black women. Tools developed in this project can be used to study microbial ecology in diverse settings at high resolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multi-species biofilms: living with friendly neighbors.

              Our knowledge regarding the nature and development of microbial biofilms has grown significantly since the first report of these communities by Antonie van Leeuwenhoek in the late 1600s. Nevertheless, most biofilm studies examine mono-species cultures, whereas nearly all biofilm communities in nature comprise a variety of microorganisms. The species that constitute a mixed biofilm and the interactions between these microorganisms critically influence the development and shape of the community. In this review, we focus on interactions occurring within a multi-species biofilm and their effects on the nature of the mixed community. In general, interspecies interactions involve communication, typically via quorum sensing, and metabolic cooperation or competition. Interactions among species within a biofilm can be antagonistic, such as competition over nutrients and growth inhibition, or synergistic. The latter can result in the development of several beneficial phenotypes. These include the promotion of biofilm formation by co-aggregation, metabolic cooperation where one species utilizes a metabolite produced by a neighboring species, and increased resistance to antibiotics or host immune responses compared to the mono-species biofilms. These beneficial interactions in mixed biofilms have important environmental, industrial, and clinical implications. The latter, for example, impacts the course and treatment of biofilm-related infections, such as those manifested in the lungs of cystic fibrosis patients. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                25 August 2015
                2015
                : 10
                : 8
                : e0136658
                Affiliations
                [1 ]Unit of Epidemiology and Control of HIV/STD, Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
                [2 ]Laboratory Bacteriology Research, Faculty of Medicine & Health Sciences, University of Ghent, Ghent, Belgium
                [3 ]STI Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
                [4 ]Plantijn Hogeschool, Antwerp, Belgium
                [5 ]Rinda Ubuzima, Kigali, Rwanda
                University Hospital of the Albert-Ludwigs-University Freiburg, GERMANY
                Author notes

                Competing Interests: Funding was received by TC from European and Developing Countries Clinical Trials Partnership: SP.2011.41304.043, http://www.edctp.org/; by VJ from Combined Highly Active Anti-Retroviral Microbicides under EU FP7: 242135, http://cordis.europa.eu/fp7/home_en.html; and by VJ from Dormeur Investment Service Ltd. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: LH VJ TC. Performed the experiments: LH ND LM VM. Analyzed the data: VJ LH. Contributed reagents/materials/analysis tools: MV TC. Wrote the paper: LH VJ ND LM VM MV TC.

                Article
                PONE-D-15-04314
                10.1371/journal.pone.0136658
                4548953
                26305575
                8a1d5676-7d17-4622-9bcb-11e664037bc4
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 3 February 2015
                : 5 August 2015
                Page count
                Figures: 5, Tables: 4, Pages: 16
                Funding
                Funding was received by TC from European and Developing Countries Clinical Trials Partnership: SP.2011.41304.043, http://www.edctp.org/; by VJ from Combined Highly Active Anti-Retroviral Microbicides under EU FP7: 242135, http://cordis.europa.eu/fp7/home_en.html; and by VJ from Dormeur Investment Service Ltd. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article