55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pancreatic stellate cell: Pandora's box for pancreatic disease biology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pancreatic stellate cells (PSCs) were identified in the early 1980s, but received much attention after 1998 when the methods to isolate and culture them from murine and human sources were developed. PSCs contribute to a small proportion of all pancreatic cells under physiological condition, but are essential for maintaining the normal pancreatic architecture. Quiescent PSCs are characterized by the presence of vitamin A laden lipid droplets. Upon PSC activation, these perinuclear lipid droplets disappear from the cytosol, attain a myofibroblast like phenotype and expresses the activation marker, alpha smooth muscle actin. PSCs maintain their activated phenotype via an autocrine loop involving different cytokines and contribute to progressive fibrosis in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Several pathways ( e.g., JAK-STAT, Smad, Wnt signaling, Hedgehog etc.), transcription factors and miRNAs have been implicated in the inflammatory and profibrogenic function of PSCs. The role of PSCs goes much beyond fibrosis/desmoplasia in PDAC. It is now shown that PSCs are involved in significant crosstalk between the pancreatic cancer cells and the cancer stroma. These interactions result in tumour progression, metastasis, tumour hypoxia, immune evasion and drug resistance. This is the rationale for therapeutic preclinical and clinical trials that have targeted PSCs and the cancer stroma.

          Related collections

          Most cited references225

          • Record: found
          • Abstract: found
          • Article: not found

          Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha.

          The stromal microenvironment of tumors, which is a mixture of hematopoietic and mesenchymal cells, suppresses immune control of tumor growth. A stromal cell type that was first identified in human cancers expresses fibroblast activation protein-α (FAP). We created a transgenic mouse in which FAP-expressing cells can be ablated. Depletion of FAP-expressing cells, which made up only 2% of all tumor cells in established Lewis lung carcinomas, caused rapid hypoxic necrosis of both cancer and stromal cells in immunogenic tumors by a process involving interferon-γ and tumor necrosis factor-α. Depleting FAP-expressing cells in a subcutaneous model of pancreatic ductal adenocarcinoma also permitted immunological control of growth. Therefore, FAP-expressing cells are a nonredundant, immune-suppressive component of the tumor microenvironment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer-associated stromal fibroblasts promote pancreatic tumor progression.

            Pancreatic adenocarcinoma is characterized by a dense background of tumor associated stroma originating from abundant pancreatic stellate cells. The aim of this study was to determine the effect of human pancreatic stellate cells (HPSC) on pancreatic tumor progression. HPSCs were isolated from resected pancreatic adenocarcinoma samples and immortalized with telomerase and SV40 large T antigen. Effects of HPSC conditioned medium (HPSC-CM) on in vitro proliferation, migration, invasion, soft-agar colony formation, and survival in the presence of gemcitabine or radiation therapy were measured in two pancreatic cancer cell lines. The effects of HPSCs on tumors were examined in an orthotopic murine model of pancreatic cancer by co-injecting them with cancer cells and analyzing growth and metastasis. HPSC-CM dose-dependently increased BxPC3 and Panc1 tumor cell proliferation, migration, invasion, and colony formation. Furthermore, gemcitabine and radiation therapy were less effective in tumor cells treated with HPSC-CM. HPSC-CM activated the mitogen-activated protein kinase and Akt pathways in tumor cells. Co-injection of tumor cells with HPSCs in an orthotopic model resulted in increased primary tumor incidence, size, and metastasis, which corresponded with the proportion of HPSCs. HPSCs produce soluble factors that stimulate signaling pathways related to proliferation and survival of pancreatic cancer cells, and the presence of HPSCs in tumors increases the growth and metastasis of these cells. These data indicate that stellate cells have an important role in supporting and promoting pancreatic cancer. Identification of HPSC-derived factors may lead to novel stroma-targeted therapies for pancreatic cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma.

              Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic microenvironment that contains many different immune cells. Activated pancreatic stellate cells (PSCs) contribute to the desmoplasia. We investigated whether distinct stromal compartments are differentially infiltrated by different types of immune cells. We used tissue microarray analysis to compare immune cell infiltration of different pancreaticobiliary diseased tissues (PDAC, ampullary carcinoma, cholangiocarcinoma, mucinous cystic neoplasm, chronic inflammation, and chronic pancreatitis) and juxtatumoral stromal (<100 μm from tumor) and panstromal compartments. We investigated the association between immune infiltrate and patient survival times. We also analyzed T-cell migration and tumor infiltration in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mice and the effects of all-trans retinoic acid (ATRA) on these processes. Juxtatumoral compartments in PDAC samples from 2 independent groups of patients contained increased numbers of myeloperoxidase(+) and CD68(+) cells compared with panstromal compartments. However, juxtatumoral compartments of PDACs contained fewer CD8(+), FoxP3(+), CD56(+), or CD20(+) cells than panstromal compartments, a distinction absent in ampullary carcinomas and cholangiocarcinomas. Patients with PDACs that had high densities of CD8(+) T cells in the juxtatumoral compartment had longer survival times than patients with lower densities. In KPC mice, administration of ATRA, which renders PSCs quiescent, increased numbers of CD8(+) T cells in juxtatumoral compartments. We found that activated PSCs express cytokines, chemokines, and adhesion molecules that regulate T-cell migration. In vitro migration assays showed that CD8(+) T cells, from patients with PDAC, had increased chemotaxis toward activated PSCs, which secrete CXCL12, compared with quiescent PSCs or tumor cells. These effects could be reversed by knockdown of CXCL12 or treatment of PSCs with ATRA. Based on studies of human PDAC samples and KPC mice, activated PSCs appear to reduce migration of CD8(+) T cells to juxtatumoral stromal compartments, preventing their access to cancer cells. Deregulated signaling by activated PSCs could prevent an effective antitumor immune response. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                World J Gastroenterol
                World J. Gastroenterol
                WJG
                World Journal of Gastroenterology
                Baishideng Publishing Group Inc
                1007-9327
                2219-2840
                21 January 2017
                21 January 2017
                : 23
                : 3
                : 382-405
                Affiliations
                Ratnakar R Bynigeri, Aparna Jakkampudi, Ramaiah Jangala, Chivukula Subramanyam, Mitnala Sasikala, G Venkat Rao, D Nageshwar Reddy, Rupjyoti Talukdar, Institute of Basic Sciences, Asian Healthcare Foundation, Hyderabad 500082, India
                D Nageshwar Reddy, Rupjyoti Talukdar, Department of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad 500082, India
                G Venkat Rao, Department of Surgical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad 500082, India
                Author notes

                Author contributions: Bynigeri RR, Jakkampudi A and Jangala R conducted literature search, compiled references and drafted the paper; Subramanyam C, Sasikala M, Rao GV and Reddy DN contributed to manuscript drafting and provided intellectual input; Talukdar R conceived and designed the manuscript, verified content, contributed to manuscript drafting and approved the final manuscript.

                Correspondence to: Rupjyoti Talukdar, MD, Clinical Pancreatologist, Asian Institute of Gastroenterology, Clinician Scientist (Wellcome-DBT Fellow), Asian Healthcare Foundation, 6-3-661 Somajiguda, Hyderabad 500082, Telangana, India. rup_talukdar@ 123456yahoo.com

                Telephone: +91-40-23378888 Fax: +91-40-23324255

                Article
                jWJG.v23.i3.pg382
                10.3748/wjg.v23.i3.382
                5291844
                28210075
                86fce0ee-ca98-410f-bae1-9c85858a5168
                ©The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

                History
                : 30 August 2016
                : 9 November 2016
                : 16 December 2016
                Categories
                Review

                pancreatic stellate cells,pancreatic fibrosis,pancreatic cancer stroma,physiological functions,pancreatic stellate cells-cancer-stromal interactions,therapeutic targets

                Comments

                Comment on this article