11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Evolution of the Role of External Ventricular Drainage in Traumatic Brain Injury

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          External ventricular drains (EVDs) are commonly used in neurosurgery in different conditions but frequently in the management of traumatic brain injury (TBI) to monitor and/or control intracranial pressure (ICP) by diverting cerebrospinal fluid (CSF). Their clinical effectiveness, when used as a therapeutic ICP-lowering procedure in contemporary practice, remains unclear. No consensus has been reached regarding the drainage strategy and optimal timing of insertion. We review the literature on EVDs in the setting of TBI, discussing its clinical indications, surgical technique, complications, clinical outcomes, and economic considerations.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: found
          • Article: not found

          A trial of intracranial-pressure monitoring in traumatic brain injury.

          Intracranial-pressure monitoring is considered the standard of care for severe traumatic brain injury and is used frequently, but the efficacy of treatment based on monitoring in improving the outcome has not been rigorously assessed. We conducted a multicenter, controlled trial in which 324 patients 13 years of age or older who had severe traumatic brain injury and were being treated in intensive care units (ICUs) in Bolivia or Ecuador were randomly assigned to one of two specific protocols: guidelines-based management in which a protocol for monitoring intraparenchymal intracranial pressure was used (pressure-monitoring group) or a protocol in which treatment was based on imaging and clinical examination (imaging-clinical examination group). The primary outcome was a composite of survival time, impaired consciousness, and functional status at 3 months and 6 months and neuropsychological status at 6 months; neuropsychological status was assessed by an examiner who was unaware of protocol assignment. This composite measure was based on performance across 21 measures of functional and cognitive status and calculated as a percentile (with 0 indicating the worst performance, and 100 the best performance). There was no significant between-group difference in the primary outcome, a composite measure based on percentile performance across 21 measures of functional and cognitive status (score, 56 in the pressure-monitoring group vs. 53 in the imaging-clinical examination group; P=0.49). Six-month mortality was 39% in the pressure-monitoring group and 41% in the imaging-clinical examination group (P=0.60). The median length of stay in the ICU was similar in the two groups (12 days in the pressure-monitoring group and 9 days in the imaging-clinical examination group; P=0.25), although the number of days of brain-specific treatments (e.g., administration of hyperosmolar fluids and the use of hyperventilation) in the ICU was higher in the imaging-clinical examination group than in the pressure-monitoring group (4.8 vs. 3.4, P=0.002). The distribution of serious adverse events was similar in the two groups. For patients with severe traumatic brain injury, care focused on maintaining monitored intracranial pressure at 20 mm Hg or less was not shown to be superior to care based on imaging and clinical examination. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT01068522.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology.

            N. Abbott (2004)
            This review surveys evidence for the flow of brain interstitial fluid (ISF) via preferential pathways through the brain, and its relation to cerebrospinal fluid (CSF). Studies over >100 years have raised several controversial points, not all of them resolved. Recent studies have usefully combined a histological and a mathematical approach. Taken together the evidence indicates an ISF bulk flow rate of 0.1-0.3 microl min(-1) g(-1) in rat brain along preferential pathways especially perivascular spaces and axon tracts. The main source of this fluid is likely to be the brain capillary endothelium, which has the necessary ion transporters, channels and water permeability to generate fluid at a low rate, c1/100th of the rate per square centimeter of CSF secretion across choroid plexus epithelium. There is also evidence that a proportion of CSF may recycle from the subarachnoid space into arterial perivascular spaces on the ventral surface of the brain, and join the circulating ISF, draining back via venous perivascular spaces and axon tracts into CSF compartments, and out both through arachnoid granulations and along cranial nerves to the lymphatics of the neck. The bulk flow of ISF has implications for non-synaptic cell:cell communication (volume transmission); for drug delivery, distribution, and clearance; for brain ionic homeostasis and its disturbance in brain edema; for the immune function of the brain; for the clearance of beta-amyloid deposits; and for the migration of cells (malignant cells, stem cells). Copyright 2003 Elsevier Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early management of severe traumatic brain injury.

              Severe traumatic brain injury remains a major health-care problem worldwide. Although major progress has been made in understanding of the pathophysiology of this injury, this has not yet led to substantial improvements in outcome. In this report, we address present knowledge and its limitations, research innovations, and clinical implications. Improved outcomes for patients with severe traumatic brain injury could result from progress in pharmacological and other treatments, neural repair and regeneration, optimisation of surgical indications and techniques, and combination and individually targeted treatments. Expanded classification of traumatic brain injury and innovations in research design will underpin these advances. We are optimistic that further gains in outcome for patients with severe traumatic brain injury will be achieved in the next decade. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                10 September 2019
                September 2019
                : 8
                : 9
                : 1422
                Affiliations
                [1 ]Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge CB20QQ, UK
                [2 ]Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N3BG, UK
                [3 ]Neurosciences Institute, INUB-MEDITECH Research Group, El Bosque University, 113033 Bogotá, Colombia
                [4 ]NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge CB20QQ, UK
                [5 ]Department of Neurosurgery, Innsbruck Medical University, 6020 Innsbruck, Austria
                [6 ]Department of Neurosurgery, Humanitas University and Research Hospital, 20090 Milan, Italy
                [7 ]Division of Anaesthesia, Addenbrooke’s Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge CB20QQ, UK
                Author notes
                [* ]Correspondence: angeloskolias@ 123456gmail.com ; Tel.: +44-1223-336-946
                Author information
                https://orcid.org/0000-0001-8931-3254
                https://orcid.org/0000-0003-3992-0587
                Article
                jcm-08-01422
                10.3390/jcm8091422
                6780113
                31509945
                86cdc445-7295-46f1-aa79-f0665f90f6ac
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 July 2019
                : 05 September 2019
                Categories
                Review

                neurosurgery,ventriculostomy,neurotrauma,intracranial pressure,evd,tbi,icp

                Comments

                Comment on this article