24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Spectral composition of concurrent noise affects neuronal sensitivity to interaural time differences of tones in the dorsal nucleus of the lateral lemniscus.

      1 ,   ,
      Journal of neurophysiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We are regularly exposed to several concurrent sounds, producing a mixture of binaural cues. The neuronal mechanisms underlying the localization of concurrent sounds are not well understood. The major binaural cues for localizing low-frequency sounds in the horizontal plane are interaural time differences (ITDs). Auditory brain stem neurons encode ITDs by firing maximally in response to "favorable" ITDs and weakly or not at all in response to "unfavorable" ITDs. We recorded from ITD-sensitive neurons in the dorsal nucleus of the lateral lemniscus (DNLL) while presenting pure tones at different ITDs embedded in noise. We found that increasing levels of concurrent white noise suppressed the maximal response rate to tones with favorable ITDs and slightly enhanced the response rate to tones with unfavorable ITDs. Nevertheless, most of the neurons maintained ITD sensitivity to tones even for noise intensities equal to that of the tone. Using concurrent noise with a spectral composition in which the neuron's excitatory frequencies are omitted reduced the maximal response similar to that obtained with concurrent white noise. This finding indicates that the decrease of the maximal rate is mediated by suppressive cross-frequency interactions, which we also observed during monaural stimulation with additional white noise. In contrast, the enhancement of the firing rate to tones at unfavorable ITD might be due to early binaural interactions (e.g., at the level of the superior olive). A simple simulation corroborates this interpretation. Taken together, these findings suggest that the spectral composition of a concurrent sound strongly influences the spatial processing of ITD-sensitive DNLL neurons.

          Related collections

          Author and article information

          Journal
          J. Neurophysiol.
          Journal of neurophysiology
          American Physiological Society
          0022-3077
          0022-3077
          Nov 2007
          : 98
          : 5
          Affiliations
          [1 ] Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Germany.
          Article
          00275.2007
          10.1152/jn.00275.2007
          17699697
          866825af-472f-49a3-bee6-7846c1b8f896
          History

          Comments

          Comment on this article