101
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bacterial Plasminogen Receptors: Mediators of a Multifaceted Relationship

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multiple species of bacteria are able to sequester the host zymogen plasminogen to the cell surface. Once localised to the bacterial surface, plasminogen can act as a cofactor in adhesion, or, following activation to plasmin, provide a source of potent proteolytic activity. Numerous bacterial plasminogen receptors have been identified, and the mechanisms by which they interact with plasminogen are diverse. Here we provide an overview of bacterial plasminogen receptors and discuss the diverse role bacterial plasminogen acquisition plays in the relationship between bacteria and the host.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: not found

          The urokinase-type plasminogen activator system in cancer metastasis: a review.

          The urokinase-type plasminogen activator (u-PA) system consists of the serine proteinases plasmin and u-PA; the serpin inhibitors alpha2-anti-plasmin, PAI-1 and PAI-2; and the u-PA receptor (u-PAR). Two lines of evidence have strongly suggested an important and apparently causal role for the u-PA system in cancer metastasis: results from experimental model systems with animal tumor metastasis and the finding that high levels of u-PA, PAI-1 and u-PAR in many tumor types predict poor patient prognosis. We discuss here recent observations related to the molecular and cellular mechanisms underlying this role of the u-PA system. Many findings suggest that the system does not support tumor metastasis by the unrestricted enzyme activity of u-PA and plasmin. Rather, pericellular molecular and functional interactions between u-PA, u-PAR, PAI-1, extracellular matrix proteins, integrins, endocytosis receptors and growth factors appear to allow temporal and spatial re-organizations of the system during cell migration and a selective degradation of extracellular matrix proteins during invasion. Differential expression of components of the system by cancer and non-cancer cells, regulated by paracrine mechanisms, appear to determine the involvement of the system in cancer cell-directed tissue remodeling. A detailed knowledge of these processes is necessary for utilization of the therapeutic potential of interfering with the action of the system in cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface.

            Binding of human plasminogen to Streptococcus pneumoniae and its subsequent activation promotes penetration of bacteria through reconstituted basement membranes. In this study, we have characterized a novel pneumococcal surface protein with a molecular mass of 47 kDa, designated Eno, which specifically binds human plasmin(ogen), exhibits alpha-enolase activity and is necessary for viability. Using enzyme assays, we have confirmed the alpha-enolase activity of both pneumococcal surface-displayed Eno and purified recombinant Eno protein. Immunoelectron microscopy indicated the presence of Eno in the cytoplasm as well as on the surface of encapsulated and unencapsulated pneumococci. Plasminogen-binding activity was demonstrated with whole pneumococcal cells and purified Eno protein. Binding of activated plasminogen was also shown for Eno; however, the affinity for plasmin is significantly reduced compared with plasminogen. Results from competitive inhibition assays indicate that binding is mediated through the lysine binding sites in plasmin(ogen). Carboxypeptidase B treatment and amino acid substitutions of the C-terminal lysyl residues of Eno indicated that the C-terminal lysine is pivotal for plasmin(ogen)-binding activity. Eno is ubiquitously distributed among pneumococcal serotypes, and binding experiments suggested the reassociation of secreted Eno to the bacterial cell surface. The reassociation was also confirmed by immunoelectron microscopy. The results suggest a mechanism of plasminogen activation for human pathogens that might contribute to their virulence potential in invasive infectious processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasminogen is a critical host pathogenicity factor for group A streptococcal infection.

              Group A streptococci, a common human pathogen, secrete streptokinase, which activates the host's blood clot-dissolving protein, plasminogen. Streptokinase is highly specific for human plasminogen, exhibiting little or no activity against other mammalian species, including mouse. Here, a transgene expressing human plasminogen markedly increased mortality in mice infected with streptococci, and this susceptibility was dependent on bacterial streptokinase expression. Thus, streptokinase is a key pathogenicity factor and the primary determinant of host species specificity for group A streptococcal infection. In addition, local fibrin clot formation may be implicated in host defense against microbial pathogens.
                Bookmark

                Author and article information

                Journal
                J Biomed Biotechnol
                J. Biomed. Biotechnol
                JBB
                Journal of Biomedicine and Biotechnology
                Hindawi Publishing Corporation
                1110-7243
                1110-7251
                2012
                14 October 2012
                : 2012
                : 272148
                Affiliations
                Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
                Author notes
                *Martina L. Sanderson-Smith: martina@ 123456uow.edu.au

                Academic Editor: Lindsey A. Miles

                Article
                10.1155/2012/272148
                3478875
                23118502
                85fca7c5-3299-4854-bbb4-46312d6e7bdc
                Copyright © 2012 Martina L. Sanderson-Smith et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 March 2012
                : 7 June 2012
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article