11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrating forest health conditions and species adaptive capacities to infer future trajectories of the high elevation five-needle white pines

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references335

          • Record: found
          • Abstract: found
          • Article: found

          Ecological and Evolutionary Responses to Recent Climate Change

          Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research. Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change. Tropical coral reefs and amphibians have been most negatively affected. Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming. Evolutionary adaptations to warmer conditions have occurred in the interiors of species' ranges, and resource use and dispersal have evolved rapidly at expanding range margins. Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene

                Bookmark

                Author and article information

                Journal
                Forest Ecology and Management
                Forest Ecology and Management
                Elsevier BV
                03781127
                October 2022
                October 2022
                : 521
                : 120389
                Article
                10.1016/j.foreco.2022.120389
                85a847fe-d9ff-4282-8552-efe485de5bbb
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article