3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mapping RNA splicing variations in clinically accessible and nonaccessible tissues to facilitate Mendelian disease diagnosis using RNA-seq

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA-seq is a promising approach to improve diagnoses by detecting pathogenic aberrations in RNA splicing that are missed by DNA sequencing. RNA-seq is typically performed on clinically-accessible tissues (CATs) from blood and skin. RNA tissue-specificity makes it difficult to identify aberrations in relevant but non-accessible tissues (non-CATs). We determined how RNA-seq from CATs represent splicing in and across genes and non-CATs. We quantified RNA splicing in 801 RNA-seq samples from 56 different adult and fetal tissues from GTEx and ArrayExpress. We identified genes and splicing events in each non-CAT and determined when RNA-seq in each CAT would inadequately represent them. We developed an online resource, MAJIQ-CAT, for exploring our analysis for specific genes and tissues. In non-CATs, 40.2% of genes have splicing that is inadequately represented by at least one CAT. 6.3% of genes have splicing inadequately represented by all CATs. A majority (52.1%) of inadequately represented genes are lowly expressed in CATs (TPM < 1), but 5.8% are inadequately represented despite being well expressed (TPM > 10). Many splicing events in non-CATs are inadequately evaluated using RNA-seq from CATs. MAJIQ-CAT allows users to explore which accessible tissues, if any, best represent splicing in genes and tissues of interest.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Splicing in disease: disruption of the splicing code and the decoding machinery.

          Human genes contain a dense array of diverse cis-acting elements that make up a code required for the expression of correctly spliced mRNAs. Alternative splicing generates a highly dynamic human proteome through networks of coordinated splicing events. Cis- and trans-acting mutations that disrupt the splicing code or the machinery required for splicing and its regulation have roles in various diseases, and recent studies have provided new insights into the mechanisms by which these effects occur. An unexpectedly large fraction of exonic mutations exhibit a primary pathogenic effect on splicing. Furthermore, normal genetic variation significantly contributes to disease severity and susceptibility by affecting splicing efficiency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Improving genetic diagnosis in Mendelian disease with transcriptome sequencing

            Exome and whole-genome sequencing are becoming increasingly routine approaches in Mendelian disease diagnosis. Despite their success, the current diagnostic rate for genomic analyses across a variety of rare diseases is approximately 25 to 50%. We explore the utility of transcriptome sequencing [RNA sequencing (RNA-seq)] as a complementary diagnostic tool in a cohort of 50 patients with genetically undiagnosed rare muscle disorders. We describe an integrated approach to analyze patient muscle RNA-seq, leveraging an analysis framework focused on the detection of transcript-level changes that are unique to the patient compared to more than 180 control skeletal muscle samples. We demonstrate the power of RNA-seq to validate candidate splice-disrupting mutations and to identify splice-altering variants in both exonic and deep intronic regions, yielding an overall diagnosis rate of 35%. We also report the discovery of a highly recurrent de novo intronic mutation in COL6A1 that results in a dominantly acting splice-gain event, disrupting the critical glycine repeat motif of the triple helical domain. We identify this pathogenic variant in a total of 27 genetically unsolved patients in an external collagen VI–like dystrophy cohort, thus explaining approximately 25% of patients clinically suggestive of having collagen VI dystrophy in whom prior genetic analysis is negative. Overall, this study represents a large systematic application of transcriptome sequencing to rare disease diagnosis and highlights its utility for the detection and interpretation of variants missed by current standard diagnostic approaches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genetic diagnosis of Mendelian disorders via RNA sequencing

              Across a variety of Mendelian disorders, ∼50–75% of patients do not receive a genetic diagnosis by exome sequencing indicating disease-causing variants in non-coding regions. Although genome sequencing in principle reveals all genetic variants, their sizeable number and poorer annotation make prioritization challenging. Here, we demonstrate the power of transcriptome sequencing to molecularly diagnose 10% (5 of 48) of mitochondriopathy patients and identify candidate genes for the remainder. We find a median of one aberrantly expressed gene, five aberrant splicing events and six mono-allelically expressed rare variants in patient-derived fibroblasts and establish disease-causing roles for each kind. Private exons often arise from cryptic splice sites providing an important clue for variant prioritization. One such event is found in the complex I assembly factor TIMMDC1 establishing a novel disease-associated gene. In conclusion, our study expands the diagnostic tools for detecting non-exonic variants and provides examples of intronic loss-of-function variants with pathological relevance.
                Bookmark

                Author and article information

                Journal
                Genetics in Medicine
                Genet Med
                Springer Science and Business Media LLC
                1098-3600
                1530-0366
                March 30 2020
                Article
                10.1038/s41436-020-0780-y
                7335339
                32225167
                85889659-173e-4793-acb9-f1e2437f97b0
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article