1
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Toxic impact of polystyrene microplastic particles in freshwater organisms

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ongoing COVID-19 pandemic is leading to an increase of the global production of plastics since the use of personal protective equipment (PPEs, i.e. gloves, gowns, masks, packaging items), has become mandatory to prevent the spread of the virus. Plastic breaks down into micro/nano particles due to physical or chemical or biological actions into environment. Due to small dimensions, ubiquitous and persistent nature, the plastic particles represent a significant threat to ecosystems and can entry into food chains. Among the plastic polymers used for PPEs, polystyrene is less studied regarding its eco-geno-toxicity. This study aims to investigate acute, chronic and subchronic effects of the microplastic polystyrene beads (PS-MP, size 1.0 μm) on three freshwater species, the alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus, the crustacean Ceriodaphnia dubia and the benthic ostracod Heterocypris incongruens. Furthermore, the potential genotoxicity and the ROS production due to the PS-MP were also determined in C. dubia.

          Results revealed that the acute effects occurred at concentrations of PS-MP in the order of dozens of mg/L in B. calyciflorus and C. dubia and hundreds of mg/L in H. incongruens.

          Regarding long-term toxicity, increasing chronic effects with EC50s in the order of units ( C. dubia), hundreds ( B. calyciflorus) and thousands ( R. subcapitata) of μg/L were observed. Both for acute and chronic/sub chronic toxicity, daphnids were more sensitive to polystyrene than ostracods. Moreover, when C. dubia neonates were exposed to the PS-MP, alterations in genetic material as well as the production of ROS occurred, starting from concentrations in the order of units of μg/L, probably due to inflammatory responses. At last, the risk quotient (RQ) as a measure of risk posed by PS-MPs in freshwater environment, was calculated obtaining a value of 7.2, higher than the threshold value of 1.

          Graphical abstract

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          The physical impacts of microplastics on marine organisms: a review.

          Plastic debris at the micro-, and potentially also the nano-scale, are widespread in the environment. Microplastics have accumulated in oceans and sediments worldwide in recent years, with maximum concentrations reaching 100 000 particles m(3). Due to their small size, microplastics may be ingested by low trophic fauna, with uncertain consequences for the health of the organism. This review focuses on marine invertebrates and their susceptibility to the physical impacts of microplastic uptake. Some of the main points discussed are (1) an evaluation of the factors contributing to the bioavailability of microplastics including size and density; (2) an assessment of the relative susceptibility of different feeding guilds; (3) an overview of the factors most likely to influence the physical impacts of microplastics such as accumulation and translocation; and (4) the trophic transfer of microplastics. These findings are important in guiding future marine litter research and management strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions.

            The presence of microplastics in the marine environment poses a great threat to the entire ecosystem and has received much attention lately as the presence has greatly impacted oceans, lakes, seas, rivers, coastal areas and even the Polar Regions. Microplastics are found in most commonly utilized products (primary microplastics), or may originate from the fragmentation of larger plastic debris (secondary microplastics). The material enters the marine environment through terrestrial and land-based activities, especially via runoffs and is known to have great impact on marine organisms as studies have shown that large numbers of marine organisms have been affected by microplastics. Microplastic particles have been found distributed in large numbers in Africa, Asia, Southeast Asia, India, South Africa, North America, and in Europe. This review describes the sources and global distribution of microplastics in the environment, the fate and impact on marine biota, especially the food chain. Furthermore, the control measures discussed are those mapped out by both national and international environmental organizations for combating the impact from microplastics. Identifying the main sources of microplastic pollution in the environment and creating awareness through education at the public, private, and government sectors will go a long way in reducing the entry of microplastics into the environment. Also, knowing the associated behavioral mechanisms will enable better understanding of the impacts for the marine environment. However, a more promising and environmentally safe approach could be provided by exploiting the potentials of microorganisms, especially those of marine origin that can degrade microplastics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Microplastics in freshwaters and drinking water: Critical review and assessment of data quality

              Microplastics have recently been detected in drinking water as well as in drinking water sources. This presence has triggered discussions on possible implications for human health. However, there have been questions regarding the quality of these occurrence studies since there are no standard sampling, extraction and identification methods for microplastics. Accordingly, we assessed the quality of fifty studies researching microplastics in drinking water and in its major freshwater sources. This includes an assessment of microplastic occurrence data from river and lake water, groundwater, tap water and bottled drinking water. Studies of occurrence in wastewater were also reviewed. We review and propose best practices to sample, extract and detect microplastics and provide a quantitative quality assessment of studies reporting microplastic concentrations. Further, we summarize the findings related to microplastic concentrations, polymer types and particle shapes. Microplastics are frequently present in freshwaters and drinking water, and number concentrations spanned ten orders of magnitude (1 × 10−2 to 108 #/m3) across individual samples and water types. However, only four out of 50 studies received positive scores for all proposed quality criteria, implying there is a significant need to improve quality assurance of microplastic sampling and analysis in water samples. The order in globally detected polymers in these studies is PE ≈ PP > PS > PVC > PET, which probably reflects the global plastic demand and a higher tendency for PVC and PET to settle as a result of their higher densities. Fragments, fibres, film, foam and pellets were the most frequently reported shapes. We conclude that more high quality data is needed on the occurrence of microplastics in drinking water, to better understand potential exposure and to inform human health risk assessments.
                Bookmark

                Author and article information

                Journal
                Chemosphere
                Chemosphere
                Chemosphere
                Published by Elsevier Ltd.
                0045-6535
                1879-1298
                18 March 2022
                18 March 2022
                : 134373
                Affiliations
                [1]Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100, Caserta, Italy
                Author notes
                []Corresponding author. Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania L. Vanvitelli, Via Vivaldi 43, I-81100, Caserta, Italy.
                Article
                S0045-6535(22)00866-9 134373
                10.1016/j.chemosphere.2022.134373
                8932136
                35314178
                84eeb672-6a10-4fe1-a68f-a5bea2735176
                © 2022 Published by Elsevier Ltd.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 17 January 2022
                : 9 March 2022
                : 17 March 2022
                Categories
                Article

                General environmental science
                polystyrene,risk quotient,microplastics,toxicity,genotoxicity,ros
                General environmental science
                polystyrene, risk quotient, microplastics, toxicity, genotoxicity, ros

                Comments

                Comment on this article