2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New South American record of the Cretaceous–Paleogene boundary interval (La Colonia Formation, Patagonia, Argentina)

      , , , , , , , ,
      Cretaceous Research
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: not found
          • Article: not found

          The least-squares line and plane and the analysis of palaeomagnetic data

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary.

            The Cretaceous-Paleogene boundary approximately 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages

                Bookmark

                Author and article information

                Contributors
                Journal
                Cretaceous Research
                Cretaceous Research
                Elsevier BV
                01956671
                October 2021
                October 2021
                : 126
                : 104889
                Article
                10.1016/j.cretres.2021.104889
                842da869-86ee-486d-96fb-7275b8a017d7
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article