32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Big bacteria.

      1 ,
      Annual review of microbiology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 microm wide nanobacteria to the largest cells of the colorless sulfur bacteria, Thiomargarita namibiensis, with a diameter of 750 microm. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for microm-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria, the 80 x 600 microm large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size are found among the colorless sulfur bacteria that oxidize hydrogen sulfide to sulfate with oxygen or nitrate. The several-cm-long filamentous species can penetrate up through the ca 500-microm-thick diffusive boundary layer and may thereby reach into water containing their electron acceptor, oxygen or nitrate. By their ability to store vast quantities of both nitrate and elemental sulfur in the cells, these bacteria have become independent of the coexistence of their substrates. In fact, a close relative, T. namibiensis, can probably respire in the sulfidic mud for several months before again filling up their large vacuoles with nitrate.

          Related collections

          Author and article information

          Journal
          Annu Rev Microbiol
          Annual review of microbiology
          Annual Reviews
          0066-4227
          0066-4227
          2001
          : 55
          Affiliations
          [1 ] Max-Planck-Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany. hschulz@mpi-bremen.de
          Article
          55/1/105
          10.1146/annurev.micro.55.1.105
          11544351
          83028ed9-d34d-4020-b5ce-6db8425b2b19
          History

          Comments

          Comment on this article