25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Taking a lesson from the COVID-19 pandemic: Preventing the future outbreaks of viral zoonoses through a multi-faceted approach

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pandemic of the novel coronavirus disease 2019 (COVID-19) has caused a significant burden to healthcare systems, economic crisis, and public fears. It is also a lesson to be learned and a call-to-action to minimize the risk of future viral pandemics and their associated challenges. The present paper outlines selected measures (i.e., monitoring and identification of novel viral agents in animals, limitations to wildlife trade, decreasing hunting activities, changes to mink farming and meat production), the implementation of which would decrease such a risk. The role of viral surveillance systems and research exploring the virus strains associated with different animal hosts is emphasized along with the need for stricter wild trade regulations and changes to hunting activities. Finally, the paper suggests modifications to the meat production system, particularly through the introduction of cultured meat that would not only decrease the risk of exposure to novel human viral pathogens but also strengthen food security and decrease the environmental impacts of food production.

          Graphical abstract

          Highlights

          • COVID-19 pandemic — it is high time to implement measures preventing future outbreaks.

          • Viral surveillance and research on new viral strains should be a primary strategy.

          • Changes to wild trade, hunting activities and meat production are needed.

          • Some of the suggested measures could also bring environmental and ethical benefits.

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          WHO Declares COVID-19 a Pandemic

          The World Health Organization (WHO) on March 11, 2020, has declared the novel coronavirus (COVID-19) outbreak a global pandemic (1). At a news briefing, WHO Director-General, Dr. Tedros Adhanom Ghebreyesus, noted that over the past 2 weeks, the number of cases outside China increased 13-fold and the number of countries with cases increased threefold. Further increases are expected. He said that the WHO is “deeply concerned both by the alarming levels of spread and severity and by the alarming levels of inaction,” and he called on countries to take action now to contain the virus. “We should double down,” he said. “We should be more aggressive.” Among the WHO’s current recommendations, people with mild respiratory symptoms should be encouraged to isolate themselves, and social distancing is emphasized and these recommendations apply even to countries with no reported cases (2). Separately, in JAMA, researchers report that SARS-CoV-2, the virus that causes COVID-19, was most often detected in respiratory samples from patients in China. However, live virus was also found in feces. They conclude: “Transmission of the virus by respiratory and extrarespiratory routes may help explain the rapid spread of disease.”(3). COVID-19 is a novel disease with an incompletely described clinical course, especially for children. In a recente report W. Liu et al described that the virus causing Covid-19 was detected early in the epidemic in 6 (1.6%) out of 366 children (≤16 years of age) hospitalized because of respiratory infections at Tongji Hospital, around Wuhan. All these six children had previously been completely healthy and their clinical characteristics at admission included high fever (>39°C) cough and vomiting (only in four). Four of the six patients had pneumonia, and only one required intensive care. All patients were treated with antiviral agents, antibiotic agents, and supportive therapies, and recovered after a median 7.5 days of hospitalization. (4). Risk factors for severe illness remain uncertain (although older age and comorbidity have emerged as likely important factors), the safety of supportive care strategies such as oxygen by high-flow nasal cannula and noninvasive ventilation are unclear, and the risk of mortality, even among critically ill patients, is uncertain. There are no proven effective specific treatment strategies, and the risk-benefit ratio for commonly used treatments such as corticosteroids is unclear (3,5). Septic shock and specific organ dysfunction such as acute kidney injury appear to occur in a significant proportion of patients with COVID-19–related critical illness and are associated with increasing mortality, with management recommendations following available evidence-based guidelines (3). Novel COVID-19 “can often present as a common cold-like illness,” wrote Roman Wöelfel et al. (6). They report data from a study concerning nine young- to middle-aged adults in Germany who developed COVID-19 after close contact with a known case. All had generally mild clinical courses; seven had upper respiratory tract disease, and two had limited involvement of the lower respiratory tract. Pharyngeal virus shedding was high during the first week of symptoms, peaking on day 4. Additionally, sputum viral shedding persisted after symptom resolution. The German researchers say the current case definition for COVID-19, which emphasizes lower respiratory tract disease, may need to be adjusted(6). But they considered only young and “normal” subjecta whereas the story is different in frail comorbid older patients, in whom COVID 19 may precipitate an insterstitial pneumonia, with severe respiratory failure and death (3). High level of attention should be paid to comorbidities in the treatment of COVID-19. In the literature, COVID-19 is characterised by the symptoms of viral pneumonia such as fever, fatigue, dry cough, and lymphopenia. Many of the older patients who become severely ill have evidence of underlying illness such as cardiovascular disease, liver disease, kidney disease, or malignant tumours. These patients often die of their original comorbidities. They die “with COVID”, but were extremely frail and we therefore need to accurately evaluate all original comorbidities. In addition to the risk of group transmission of an infectious disease, we should pay full attention to the treatment of the original comorbidities of the individual while treating pneumonia, especially in older patients with serious comorbid conditions and polipharmacy. Not only capable of causing pneumonia, COVID-19 may also cause damage to other organs such as the heart, the liver, and the kidneys, as well as to organ systems such as the blood and the immune system. Patients die of multiple organ failure, shock, acute respiratory distress syndrome, heart failure, arrhythmias, and renal failure (5,6). What we know about COVID 19? In December 2019, a cluster of severe pneumonia cases of unknown cause was reported in Wuhan, Hubei province, China. The initial cluster was epidemiologically linked to a seafood wholesale market in Wuhan, although many of the initial 41 cases were later reported to have no known exposure to the market (7). A novel strain of coronavirus belonging to the same family of viruses that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), as well as the 4 human coronaviruses associated with the common cold, was subsequently isolated from lower respiratory tract samples of 4 cases on 7 January 2020. On 30 January 2020, the WHO declared that the SARS-CoV-2 outbreak constituted a Public Health Emergency of International Concern, and more than 80, 000 confirmed cases had been reported worldwide as of 28 February 2020 (8). On 31 January 2020, the U.S. Centers for Disease Control and Prevention announced that all citizens returning from Hubei province, China, would be subject to mandatory quarantine for up to 14 days. But from China COVID 19 arrived to many other countries. Rothe C et al reported a case of a 33-year-old otherwise healthy German businessman :she became ill with a sore throat, chills, and myalgias on January 24, 2020 (9). The following day, a fever of 39.1°C developed, along with a productive cough. By the evening of the next day, he started feeling better and went back to work on January 27. Before the onset of symptoms, he had attended meetings with a Chinese business partner at his company near Munich on January 20 and 21. The business partner, a Shanghai resident, had visited Germany between January 19 and 22. During her stay, she had been well with no signs or symptoms of infection but had become ill on her flight back to China, where she tested positive for 2019-nCoV on January 26. This case of 2019-nCoV infection was diagnosed in Germany and transmitted outside Asia. However, it is notable that the infection appears to have been transmitted during the incubation period of the index patient, in whom the illness was brief and nonspecific. The fact that asymptomatic persons are potential sources of 2019-nCoV infection may warrant a reassessment of transmission dynamics of the current outbreak (9). Our current understanding of the incubation period for COVID-19 is limited. An early analysis based on 88 confirmed cases in Chinese provinces outside Wuhan, using data on known travel to and from Wuhan to estimate the exposure interval, indicated a mean incubation period of 6.4 days (95% CI, 5.6 to 7.7 days), with a range of 2.1 to 11.1 days. Another analysis based on 158 confirmed cases outside Wuhan estimated a median incubation period of 5.0 days (CI, 4.4 to 5.6 days), with a range of 2 to 14 days. These estimates are generally consistent with estimates from 10 confirmed cases in China (mean incubation period, 5.2 days [CI, 4.1 to 7.0 days] and from clinical reports of a familial cluster of COVID-19 in which symptom onset occurred 3 to 6 days after assumed exposure in Wuhan (10-12). The incubation period can inform several important public health activities for infectious diseases, including active monitoring, surveillance, control, and modeling. Active monitoring requires potentially exposed persons to contact local health authorities to report their health status every day. Understanding the length of active monitoring needed to limit the risk for missing infections is necessary for health departments to effectively use resources. A recent paper provides additional evidence for a median incubation period for COVID-19 of approximately 5 days (13). Lauer et al suggest that 101 out of every 10 000 cases will develop symptoms after 14 days of active monitoring or quarantinen (13). Whether this rate is acceptable depends on the expected risk for infection in the population being monitored and considered judgment about the cost of missing cases. Combining these judgments with the estimates presented here can help public health officials to set rational and evidence-based COVID-19 control policies. Note that the proportion of mild cases detected has increased as surveillance and monitoring systems have been strengthened. The incubation period for these severe cases may differ from that of less severe or subclinical infections and is not typically an applicable measure for those with asymptomatic infections In conclusion, in a very short period health care systems and society have been severely challenged by yet another emerging virus. Preventing transmission and slowing the rate of new infections are the primary goals; however, the concern of COVID-19 causing critical illness and death is at the core of public anxiety. The critical care community has enormous experience in treating severe acute respiratory infections every year, often from uncertain causes. The care of severely ill patients, in particular older persons with COVID-19 must be grounded in this evidence base and, in parallel, ensure that learning from each patient could be of great importance to care all population,
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19

            Summary Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The proximal origin of SARS-CoV-2

              To the Editor — Since the first reports of novel pneumonia (COVID-19) in Wuhan, Hubei province, China 1,2 , there has been considerable discussion on the origin of the causative virus, SARS-CoV-2 3 (also referred to as HCoV-19) 4 . Infections with SARS-CoV-2 are now widespread, and as of 11 March 2020, 121,564 cases have been confirmed in more than 110 countries, with 4,373 deaths 5 . SARS-CoV-2 is the seventh coronavirus known to infect humans; SARS-CoV, MERS-CoV and SARS-CoV-2 can cause severe disease, whereas HKU1, NL63, OC43 and 229E are associated with mild symptoms 6 . Here we review what can be deduced about the origin of SARS-CoV-2 from comparative analysis of genomic data. We offer a perspective on the notable features of the SARS-CoV-2 genome and discuss scenarios by which they could have arisen. Our analyses clearly show that SARS-CoV-2 is not a laboratory construct or a purposefully manipulated virus. Notable features of the SARS-CoV-2 genome Our comparison of alpha- and betacoronaviruses identifies two notable genomic features of SARS-CoV-2: (i) on the basis of structural studies 7–9 and biochemical experiments 1,9,10 , SARS-CoV-2 appears to be optimized for binding to the human receptor ACE2; and (ii) the spike protein of SARS-CoV-2 has a functional polybasic (furin) cleavage site at the S1–S2 boundary through the insertion of 12 nucleotides 8 , which additionally led to the predicted acquisition of three O-linked glycans around the site. 1. Mutations in the receptor-binding domain of SARS-CoV-2 The receptor-binding domain (RBD) in the spike protein is the most variable part of the coronavirus genome 1,2 . Six RBD amino acids have been shown to be critical for binding to ACE2 receptors and for determining the host range of SARS-CoV-like viruses 7 . With coordinates based on SARS-CoV, they are Y442, L472, N479, D480, T487 and Y4911, which correspond to L455, F486, Q493, S494, N501 and Y505 in SARS-CoV-2 7 . Five of these six residues differ between SARS-CoV-2 and SARS-CoV (Fig. 1a). On the basis of structural studies 7–9 and biochemical experiments 1,9,10 , SARS-CoV-2 seems to have an RBD that binds with high affinity to ACE2 from humans, ferrets, cats and other species with high receptor homology 7 . Fig. 1 Features of the spike protein in human SARS-CoV-2 and related coronaviruses. a, Mutations in contact residues of the SARS-CoV-2 spike protein. The spike protein of SARS-CoV-2 (red bar at top) was aligned against the most closely related SARS-CoV-like coronaviruses and SARS-CoV itself. Key residues in the spike protein that make contact to the ACE2 receptor are marked with blue boxes in both SARS-CoV-2 and related viruses, including SARS-CoV (Urbani strain). b, Acquisition of polybasic cleavage site and O-linked glycans. Both the polybasic cleavage site and the three adjacent predicted O-linked glycans are unique to SARS-CoV-2 and were not previously seen in lineage B betacoronaviruses. Sequences shown are from NCBI GenBank, accession codes MN908947, MN996532, AY278741, KY417146 and MK211376. The pangolin coronavirus sequences are a consensus generated from SRR10168377 and SRR10168378 (NCBI BioProject PRJNA573298) 29,30 . While the analyses above suggest that SARS-CoV-2 may bind human ACE2 with high affinity, computational analyses predict that the interaction is not ideal 7 and that the RBD sequence is different from those shown in SARS-CoV to be optimal for receptor binding 7,11 . Thus, the high-affinity binding of the SARS-CoV-2 spike protein to human ACE2 is most likely the result of natural selection on a human or human-like ACE2 that permits another optimal binding solution to arise. This is strong evidence that SARS-CoV-2 is not the product of purposeful manipulation. 2. Polybasic furin cleavage site and O-linked glycans The second notable feature of SARS-CoV-2 is a polybasic cleavage site (RRAR) at the junction of S1 and S2, the two subunits of the spike 8 (Fig. 1b). This allows effective cleavage by furin and other proteases and has a role in determining viral infectivity and host range 12 . In addition, a leading proline is also inserted at this site in SARS-CoV-2; thus, the inserted sequence is PRRA (Fig. 1b). The turn created by the proline is predicted to result in the addition of O-linked glycans to S673, T678 and S686, which flank the cleavage site and are unique to SARS-CoV-2 (Fig. 1b). Polybasic cleavage sites have not been observed in related ‘lineage B’ betacoronaviruses, although other human betacoronaviruses, including HKU1 (lineage A), have those sites and predicted O-linked glycans 13 . Given the level of genetic variation in the spike, it is likely that SARS-CoV-2-like viruses with partial or full polybasic cleavage sites will be discovered in other species. The functional consequence of the polybasic cleavage site in SARS-CoV-2 is unknown, and it will be important to determine its impact on transmissibility and pathogenesis in animal models. Experiments with SARS-CoV have shown that insertion of a furin cleavage site at the S1–S2 junction enhances cell–cell fusion without affecting viral entry 14 . In addition, efficient cleavage of the MERS-CoV spike enables MERS-like coronaviruses from bats to infect human cells 15 . In avian influenza viruses, rapid replication and transmission in highly dense chicken populations selects for the acquisition of polybasic cleavage sites in the hemagglutinin (HA) protein 16 , which serves a function similar to that of the coronavirus spike protein. Acquisition of polybasic cleavage sites in HA, by insertion or recombination, converts low-pathogenicity avian influenza viruses into highly pathogenic forms 16 . The acquisition of polybasic cleavage sites by HA has also been observed after repeated passage in cell culture or through animals 17 . The function of the predicted O-linked glycans is unclear, but they could create a ‘mucin-like domain’ that shields epitopes or key residues on the SARS-CoV-2 spike protein 18 . Several viruses utilize mucin-like domains as glycan shields involved immunoevasion 18 . Although prediction of O-linked glycosylation is robust, experimental studies are needed to determine if these sites are used in SARS-CoV-2. Theories of SARS-CoV-2 origins It is improbable that SARS-CoV-2 emerged through laboratory manipulation of a related SARS-CoV-like coronavirus. As noted above, the RBD of SARS-CoV-2 is optimized for binding to human ACE2 with an efficient solution different from those previously predicted 7,11 . Furthermore, if genetic manipulation had been performed, one of the several reverse-genetic systems available for betacoronaviruses would probably have been used 19 . However, the genetic data irrefutably show that SARS-CoV-2 is not derived from any previously used virus backbone 20 . Instead, we propose two scenarios that can plausibly explain the origin of SARS-CoV-2: (i) natural selection in an animal host before zoonotic transfer; and (ii) natural selection in humans following zoonotic transfer. We also discuss whether selection during passage could have given rise to SARS-CoV-2. 1. Natural selection in an animal host before zoonotic transfer As many early cases of COVID-19 were linked to the Huanan market in Wuhan 1,2 , it is possible that an animal source was present at this location. Given the similarity of SARS-CoV-2 to bat SARS-CoV-like coronaviruses 2 , it is likely that bats serve as reservoir hosts for its progenitor. Although RaTG13, sampled from a Rhinolophus affinis bat 1 , is ~96% identical overall to SARS-CoV-2, its spike diverges in the RBD, which suggests that it may not bind efficiently to human ACE2 7 (Fig. 1a). Malayan pangolins (Manis javanica) illegally imported into Guangdong province contain coronaviruses similar to SARS-CoV-2 21 . Although the RaTG13 bat virus remains the closest to SARS-CoV-2 across the genome 1 , some pangolin coronaviruses exhibit strong similarity to SARS-CoV-2 in the RBD, including all six key RBD residues 21 (Fig. 1). This clearly shows that the SARS-CoV-2 spike protein optimized for binding to human-like ACE2 is the result of natural selection. Neither the bat betacoronaviruses nor the pangolin betacoronaviruses sampled thus far have polybasic cleavage sites. Although no animal coronavirus has been identified that is sufficiently similar to have served as the direct progenitor of SARS-CoV-2, the diversity of coronaviruses in bats and other species is massively undersampled. Mutations, insertions and deletions can occur near the S1–S2 junction of coronaviruses 22 , which shows that the polybasic cleavage site can arise by a natural evolutionary process. For a precursor virus to acquire both the polybasic cleavage site and mutations in the spike protein suitable for binding to human ACE2, an animal host would probably have to have a high population density (to allow natural selection to proceed efficiently) and an ACE2-encoding gene that is similar to the human ortholog. 2. Natural selection in humans following zoonotic transfer It is possible that a progenitor of SARS-CoV-2 jumped into humans, acquiring the genomic features described above through adaptation during undetected human-to-human transmission. Once acquired, these adaptations would enable the pandemic to take off and produce a sufficiently large cluster of cases to trigger the surveillance system that detected it 1,2 . All SARS-CoV-2 genomes sequenced so far have the genomic features described above and are thus derived from a common ancestor that had them too. The presence in pangolins of an RBD very similar to that of SARS-CoV-2 means that we can infer this was also probably in the virus that jumped to humans. This leaves the insertion of polybasic cleavage site to occur during human-to-human transmission. Estimates of the timing of the most recent common ancestor of SARS-CoV-2 made with current sequence data point to emergence of the virus in late November 2019 to early December 2019 23 , compatible with the earliest retrospectively confirmed cases 24 . Hence, this scenario presumes a period of unrecognized transmission in humans between the initial zoonotic event and the acquisition of the polybasic cleavage site. Sufficient opportunity could have arisen if there had been many prior zoonotic events that produced short chains of human-to-human transmission over an extended period. This is essentially the situation for MERS-CoV, for which all human cases are the result of repeated jumps of the virus from dromedary camels, producing single infections or short transmission chains that eventually resolve, with no adaptation to sustained transmission 25 . Studies of banked human samples could provide information on whether such cryptic spread has occurred. Retrospective serological studies could also be informative, and a few such studies have been conducted showing low-level exposures to SARS-CoV-like coronaviruses in certain areas of China 26 . Critically, however, these studies could not have distinguished whether exposures were due to prior infections with SARS-CoV, SARS-CoV-2 or other SARS-CoV-like coronaviruses. Further serological studies should be conducted to determine the extent of prior human exposure to SARS-CoV-2. 3. Selection during passage Basic research involving passage of bat SARS-CoV-like coronaviruses in cell culture and/or animal models has been ongoing for many years in biosafety level 2 laboratories across the world 27 , and there are documented instances of laboratory escapes of SARS-CoV 28 . We must therefore examine the possibility of an inadvertent laboratory release of SARS-CoV-2. In theory, it is possible that SARS-CoV-2 acquired RBD mutations (Fig. 1a) during adaptation to passage in cell culture, as has been observed in studies of SARS-CoV 11 . The finding of SARS-CoV-like coronaviruses from pangolins with nearly identical RBDs, however, provides a much stronger and more parsimonious explanation of how SARS-CoV-2 acquired these via recombination or mutation 19 . The acquisition of both the polybasic cleavage site and predicted O-linked glycans also argues against culture-based scenarios. New polybasic cleavage sites have been observed only after prolonged passage of low-pathogenicity avian influenza virus in vitro or in vivo 17 . Furthermore, a hypothetical generation of SARS-CoV-2 by cell culture or animal passage would have required prior isolation of a progenitor virus with very high genetic similarity, which has not been described. Subsequent generation of a polybasic cleavage site would have then required repeated passage in cell culture or animals with ACE2 receptors similar to those of humans, but such work has also not previously been described. Finally, the generation of the predicted O-linked glycans is also unlikely to have occurred due to cell-culture passage, as such features suggest the involvement of an immune system 18 . Conclusions In the midst of the global COVID-19 public-health emergency, it is reasonable to wonder why the origins of the pandemic matter. Detailed understanding of how an animal virus jumped species boundaries to infect humans so productively will help in the prevention of future zoonotic events. For example, if SARS-CoV-2 pre-adapted in another animal species, then there is the risk of future re-emergence events. In contrast, if the adaptive process occurred in humans, then even if repeated zoonotic transfers occur, they are unlikely to take off without the same series of mutations. In addition, identifying the closest viral relatives of SARS-CoV-2 circulating in animals will greatly assist studies of viral function. Indeed, the availability of the RaTG13 bat sequence helped reveal key RBD mutations and the polybasic cleavage site. The genomic features described here may explain in part the infectiousness and transmissibility of SARS-CoV-2 in humans. Although the evidence shows that SARS-CoV-2 is not a purposefully manipulated virus, it is currently impossible to prove or disprove the other theories of its origin described here. However, since we observed all notable SARS-CoV-2 features, including the optimized RBD and polybasic cleavage site, in related coronaviruses in nature, we do not believe that any type of laboratory-based scenario is plausible. More scientific data could swing the balance of evidence to favor one hypothesis over another. Obtaining related viral sequences from animal sources would be the most definitive way of revealing viral origins. For example, a future observation of an intermediate or fully formed polybasic cleavage site in a SARS-CoV-2-like virus from animals would lend even further support to the natural-selection hypotheses. It would also be helpful to obtain more genetic and functional data about SARS-CoV-2, including animal studies. The identification of a potential intermediate host of SARS-CoV-2, as well as sequencing of the virus from very early cases, would similarly be highly informative. Irrespective of the exact mechanisms by which SARS-CoV-2 originated via natural selection, the ongoing surveillance of pneumonia in humans and other animals is clearly of utmost importance.
                Bookmark

                Author and article information

                Journal
                Sci Total Environ
                Sci Total Environ
                The Science of the Total Environment
                Elsevier B.V.
                0048-9697
                1879-1026
                14 November 2020
                14 November 2020
                : 143723
                Affiliations
                [a ]Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland
                [b ]Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
                [c ]Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland
                Author notes
                [* ]Corresponding author at: Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
                Article
                S0048-9697(20)37254-5 143723
                10.1016/j.scitotenv.2020.143723
                7666614
                33213901
                829e4e7a-f2a1-492a-99f5-031d58267e82
                © 2020 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 6 October 2020
                : 6 November 2020
                : 8 November 2020
                Categories
                Review

                General environmental science
                sars-cov-2,pandemic,viral surveillance,cultured meat,hunting,mink farming

                Comments

                Comment on this article