3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accessing the energy-limited and sparsely populated deep biosphere: achievements and ongoing challenges of available technologies

      Progress in Earth and Planetary Science
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microbes in marine sediments detected and counted by direct observation of membrane-filtered sediment samples stained with acridine orange. This technique can still be applied to high-biomass (> 10 5 cells/cm 3) sedimentary habitats, such as organic-rich sediments collected in shallow areas near the seafloor. However, to further explore the nutrients and energy turnover under extremely low energy flux conditions, or in habitats that are close to the lower limit of the biosphere, technological breakthroughs have been required to increase the detection sensitivity for microbial life at densities of a few cells/cm 3 of sediment. These technological developments contributed to increasing fundamental information on microbial life at the fringes of the subseafloor biosphere and led to the discovery of revivable microbes in sediments aged up to 101.5 million years old. More recently, chemical detection methods have revealed the existence of spores in the deep biosphere that are impermeable to conventional DNA stains. Previous applications of molecular biology-based approaches have been limited to relatively higher biomass samples, potentially because the cells surviving in these very low energy flux environments have less integrated genomes. Here, I review the contribution and importance of the technological developments that have been made in the study of microbes from the subseafloor biosphere, recent developments of alternative methods to microscopically detect microbial spores and their application to deep subseafloor sediments, and the challenges associated with applying molecular biological approaches to study low-biomass samples.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The biomass distribution on Earth

          Significance The composition of the biosphere is a fundamental question in biology, yet a global quantitative account of the biomass of each taxon is still lacking. We assemble a census of the biomass of all kingdoms of life. This analysis provides a holistic view of the composition of the biosphere and allows us to observe broad patterns over taxonomic categories, geographic locations, and trophic modes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The use of DAPI for identifying and counting aquatic microflora1

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global distribution of microbial abundance and biomass in subseafloor sediment.

              The global geographic distribution of subseafloor sedimentary microbes and the cause(s) of that distribution are largely unexplored. Here, we show that total microbial cell abundance in subseafloor sediment varies between sites by ca. five orders of magnitude. This variation is strongly correlated with mean sedimentation rate and distance from land. Based on these correlations, we estimate global subseafloor sedimentary microbial abundance to be 2.9⋅10(29) cells [corresponding to 4.1 petagram (Pg) C and ∼0.6% of Earth's total living biomass]. This estimate of subseafloor sedimentary microbial abundance is roughly equal to previous estimates of total microbial abundance in seawater and total microbial abundance in soil. It is much lower than previous estimates of subseafloor sedimentary microbial abundance. In consequence, we estimate Earth's total number of microbes and total living biomass to be, respectively, 50-78% and 10-45% lower than previous estimates.
                Bookmark

                Author and article information

                Contributors
                Journal
                Progress in Earth and Planetary Science
                Prog Earth Planet Sci
                Springer Science and Business Media LLC
                2197-4284
                December 2023
                April 10 2023
                : 10
                : 1
                Article
                10.1186/s40645-023-00551-5
                8210678b-866c-4c4c-9db1-5afb446ef4af
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article