16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Exposure to polycyclic aromatic hydrocarbons with special focus on cancer

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions.

          Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). The global total annual atmospheric emission of 16 PAHs in 2007 was 504 Gg (331-818 Gg, as interquartile range), with residential/commercial biomass burning (60.5%), open-field biomass burning (agricultural waste burning, deforestation, and wildfire, 13.6%), and petroleum consumption by on-road motor vehicles (12.8%) as the major sources. South (87 Gg), East (111 Gg), and Southeast Asia (52 Gg) were the regions with the highest PAH emission densities, contributing half of the global total PAH emissions. Among the global total PAH emissions, 6.19% of the emissions were in the form of high molecular weight carcinogenic compounds and the percentage of the carcinogenic PAHs was higher in developing countries (6.22%) than in developed countries (5.73%), due to the differences in energy structures and the disparities of technology. The potential health impact of the PAH emissions was greatest in the parts of the world with high anthropogenic PAH emissions, because of the overlap of the high emissions and high population densities. Global total PAH emissions peaked at 592 Gg in 1995 and declined gradually to 499 Gg in 2008. Total PAH emissions from developed countries peaked at 122 Gg in the early 1970s and decreased to 38 Gg in 2008. Simulation of PAH emissions from 2009 to 2030 revealed that PAH emissions in developed and developing countries would decrease by 46-71% and 48-64%, respectively, based on the six IPCC SRES scenarios.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Prenatal Polycyclic Aromatic Hydrocarbon (PAH) Exposure and Child Behavior at Age 6–7 Years

            Background: Airborne polycyclic aromatic hydrocarbons (PAH) are widespread urban air pollutants from fossil fuel burning and other combustion sources. We previously reported that a broad spectrum of combustion-related DNA adducts in cord blood was associated with attention problems at 6–7 years of age in the Columbia Center for Children’s Environmental Health (CCCEH) longitudinal cohort study. Objectives: We evaluated the relationship between behavioral problems and two different measures of prenatal exposure—both specific to PAH—in the same cohort. Methods: Children of nonsmoking African-American and Dominican women in New York City (NYC) were followed from in utero to 6–7 years. Prenatal PAH exposure was estimated by personal air monitoring of the mothers during pregnancy as well as by the measurement of DNA adducts specific to benzo[a]pyrene (BaP), a representative PAH, in maternal and cord blood. At 6–7 years of age, child behavior was assessed using the Child Behavior Checklist (CBCL) (n = 253). Generalized linear models were used to test the association between prenatal PAH exposure and behavioral outcomes. Results: In multivariate analyses, high prenatal PAH exposure, whether characterized by personal air monitoring (greater than the median of 2.27 ng/m3) or maternal and cord adducts (detectable or higher), was positively associated with symptoms of Anxious/Depressed and Attention Problems (p ≤ 0.05). Conclusion: These results provide additional evidence that environmental levels of PAH encountered in NYC air can adversely affect child behavior.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism.

              Cytochrome P450 (CYP) 1A1 is an extrahepatic monooxygenase involved in the metabolism of endogenous substrates and drugs, as well as the activation of certain toxins and environmental pollutants. CYP1A1 is particularly well known for its ability to biotransform polycyclic aromatic hydrocarbons, such as benzo[a]pyrene in tobacco smoke, into carcinogens. CYP1A1 possesses functional similarities and differences with human CYP1A2 and CYP1B1 enzymes, but the structural basis for this has been unclear. We determined a 2.6 Å structure of human CYP1A1 with the inhibitor α-naphthoflavone. α-Naphthoflavone binds within an enclosed active site, with the planar benzochromen-4-one core packed flat against the I helix that composes one wall of the active site, and the 2-phenyl substituent oriented toward the catalytic heme iron. Comparisons with previously determined structures of the related cytochrome P450 1A2 and 1B1 enzymes reveal distinct features among the active sites that may underlie the functional variability of these enzymes. Finally, docking studies probed the ability of CYP1A structures to assist in understanding their known in vitro interactions with several typical substrates and inhibitors.
                Bookmark

                Author and article information

                Journal
                Asian Pacific Journal of Tropical Biomedicine
                Asian Pacific Journal of Tropical Biomedicine
                Elsevier BV
                22211691
                March 2015
                March 2015
                : 5
                : 3
                : 182-189
                Article
                10.1016/S2221-1691(15)30003-4
                80e16e2b-97a8-4703-b1fb-f06c520a880a
                © 2015

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article