30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimizing Manufacturing and Osseointegration of Ti6Al4V Implants through Precision Casting and Calcium and Phosphorus Ion Implantation? In Vivo Results of a Large-Scale Animal Trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Uncemented implants are still associated with several major challenges, especially with regard to their manufacturing and their osseointegration. In this study, a novel manufacturing technique—an optimized form of precision casting—and a novel surface modification to promote osseointegration—calcium and phosphorus ion implantation into the implant surface—were tested in vivo. Methods: Cylindrical Ti6Al4V implants were inserted bilaterally into the tibia of 110 rats. We compared two generations of cast Ti6Al4V implants (CAST 1st GEN, n = 22, and CAST 2nd GEN, n = 22) as well as cast 2nd GEN Ti6Al4V implants with calcium (CAST + CA, n = 22) and phosphorus (CAST + P, n = 22) ion implantation to standard machined Ti6Al4V implants (control, n = 22). After 4 and 12 weeks, maximal pull-out force and bone-to-implant contact rate (BIC) were measured and compared between all five groups. Results: There was no significant difference between all five groups after 4 weeks or 12 weeks with regard to pull-out force ( p > 0.05, Kruskal Wallis test). Histomorphometric analysis showed no significant difference of BIC after 4 weeks ( p > 0.05, Kruskal–Wallis test), whereas there was a trend towards a higher BIC in the CAST + P group (54.8% ± 15.2%), especially compared to the control group (38.6% ± 12.8%) after 12 weeks ( p = 0.053, Kruskal–Wallis test). Conclusion: In this study, we found no indication of inferiority of Ti6Al4V implants cast with the optimized centrifugal precision casting technique of the second generation compared to standard Ti6Al4V implants. As the employed manufacturing process holds considerable economic potential, mainly due to a significantly decreased material demand per implant by casting near net-shape instead of milling away most of the starting ingot, its application in manufacturing uncemented implants seems promising. However, no significant advantages of calcium or phosphorus ion implantation could be observed in this study. Due to the promising results of ion implantation in previous in vitro and in vivo studies, further in vivo studies with different ion implantation conditions should be considered.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--a review.

          A systematic analysis of results available from in vitro, in vivo and clinical trials on the effects of biocompatible calcium phosphate (CaP) coatings is presented. An overview of the most frequently used methods to prepare CaP-based coatings was conducted. Dense, homogeneous, highly adherent and biocompatible CaP or hybrid organic/inorganic CaP coatings with tailored properties can be deposited. It has been demonstrated that CaP coatings have a significant effect on the bone regeneration process. In vitro experiments using different cells (e.g. SaOS-2, human mesenchymal stem cells and osteoblast-like cells) have revealed that CaP coatings enhance cellular adhesion, proliferation and differentiation to promote bone regeneration. However, in vivo, the exact mechanism of osteogenesis in response to CaP coatings is unclear; indeed, there are conflicting reports of the effectiveness of CaP coatings, with results ranging from highly effective to no significant or even negative effects. This review therefore highlights progress in CaP coatings for orthopaedic implants and discusses the future research and use of these devices. Currently, an exciting area of research is in bioactive hybrid composite CaP-based coatings containing both inorganic (CaP coating) and organic (collagen, bone morphogenetic proteins, arginylglycylaspartic acid etc.) components with the aim of promoting tissue ingrowth and vascularization. Further investigations are necessary to reveal the relative influences of implant design, surgical procedure, and coating characteristics (thickness, structure, topography, porosity, wettability etc.) on the long-term clinical effects of hybrid CaP coatings. In addition to commercially available plasma spraying, other effective routes for the fabrication of hybrid CaP coatings for clinical use still need to be determined and current progress is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Implant fixation by bone ingrowth.

            The term osseointegration referred originally to an intimate contact of bone tissue with the surface of a titanium implant; the term bone ingrowth refers to bone formation within an irregular (beads, wire mesh, casting voids, cut grooves) surface of an implant. The section dealing with the historical background describes the development of macroporous, microporous, and textured surfaces with an emphasis on the evolution of porous and textured metal surfaces. The principal requirements for osseointegration and bone ingrowth are systematically reviewed as follows: i) the physiology of osseointegration and bone ingrowth, including biomaterial biocompatibility with respect to cellular and matrix response at the interface; ii) the implant surface geometry characteristics; iii) implant micromotion and fixation modes; and iv) the implant-bone interface distances. Based on current methods of bone ingrowth assessment, this article comparatively reviews and discusses the results of experimental studies with the objective of determining local and systemic factors that enhance bone ingrowth fixation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early bone formation around calcium-ion-implanted titanium inserted into rat tibia.

              Rat tibia tissue into which calcium ion (Ca2+)-implanted titanium was surgically placed was histologically analyzed to investigate the performance of the Ca(2+)-implanted titanium as a biomaterial. Calcium ions were implanted into only one side of titanium plates at 10(17) ions/cm2 and the Ca(2+)-treated titanium was surgically implanted into rat tibia for 2, 8, and 18 days. Tetracycline and calcein were used as hard-tissue labels. After excision of the tibia, the tissues were fixed, stained, embedded in polymethyl methacrylate, and sliced. The specimens were observed using a fluorescence microscope. A larger amount of new bone was formed on the Ca(2+)-treated side than on the untreated side, even at 2 days after surgery. In addition, part of the bone made contact with the Ca2(+)-treated surface. On the other hand, bone formation on the untreated side was delayed and the bone did not make contact with the surface. Mature bone with bone marrow formed in 8 days. Neither macrophage nor inflammatory cell infiltration was observed. The results indicated that Ca(2+)-implanted titanium is superior to titanium alone for bone conduction.
                Bookmark

                Author and article information

                Journal
                Materials (Basel)
                Materials (Basel)
                materials
                Materials
                MDPI
                1996-1944
                03 April 2020
                April 2020
                : 13
                : 7
                : 1670
                Affiliations
                [1 ]Department of Orthopaedic Surgery, Ulm University, 89081 Ulm, Germany; heiko.reichel@ 123456rku.de
                [2 ]Department of Orthopaedic Surgery, Division for Biochemistry of Joint and Connective Tissue Diseases, Ulm University, 89081 Ulm, Germany; betuel.katmer@ 123456uni-ulm.de (K.A.B.); joerg.fiedler@ 123456uni-ulm.de (F.J.);
                [3 ]Access e.V., 52072 Aachen, Germany; h.michels@ 123456access-technology.de
                [4 ]Peter Brehm GmbH, 91085 Weisendorf, Germany; gerhard.kappelt@ 123456peter-brehm.de
                [5 ]Institute of Orthopaedic Research and Biomechanics, Ulm University, 89081 Ulm, Germany; anita.ignatius@ 123456uni-ulm.de (I.A.); lutz.duerselen@ 123456uni-ulm.de (D.L.)
                Author notes
                Author information
                https://orcid.org/0000-0002-5834-3730
                https://orcid.org/0000-0002-4782-1979
                https://orcid.org/0000-0002-5470-5423
                Article
                materials-13-01670
                10.3390/ma13071670
                7178301
                32260177
                80d9e053-4c00-4856-b825-241c6fde4e72
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 February 2020
                : 26 March 2020
                Categories
                Article

                ion implantation,precision casting,ti6al4v,calcium,phosphorus,centrifugal casting

                Comments

                Comment on this article