0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      periscope: sub-genomic RNA identification in SARS-CoV-2 Genomic Sequencing Data

      Preprint

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have developed periscope, a tool for the detection and quantification of sub-genomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed “sub-genomic RNAs”. sgRNAs are produced through discontinuous transcription which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L which is located in the 5’ UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5’ end of all sgRNA. We applied periscope to 1,155 SARS-CoV-2 genomes from Sheffield, UK and validated our findings using orthogonal datasets and in vitro cell systems. Using a simple local alignment to detect reads which contain the leader sequence we were able to identify and quantify reads arising from canonical and non-canonical sgRNA. We were able to detect all canonical sgRNAs at expected abundances, with the exception of ORF10. A number of recurrent non-canonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/− cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing datasets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.

          Related collections

          Author and article information

          Contributors
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          Journal
          bioRxiv
          July 01 2020
          Article
          10.1101/2020.07.01.181867
          7fa49cd3-cebf-4e21-8c71-3687a8fc818d
          © 2020
          History

          Quantitative & Systems biology,Biophysics
          Quantitative & Systems biology, Biophysics

          Comments

          Comment on this article