19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Boiling Drinking Water on Diarrhea and Pathogen-Specific Infections in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract.

          Globally, approximately 2 billion people lack microbiologically safe drinking water. Boiling is the most prevalent household water treatment method, yet evidence of its health impact is limited. To conduct this systematic review, we searched four online databases with no limitations on language or publication date. Studies were eligible if health outcomes were measured for participants who reported consuming boiled and untreated water. We used reported and calculated odds ratios (ORs) and random-effects meta-analysis to estimate pathogen-specific and pooled effects by organism group and nonspecific diarrhea. Heterogeneity and publication bias were assessed using I 2, meta-regression, and funnel plots; study quality was also assessed. Of the 1,998 records identified, 27 met inclusion criteria and reported extractable data. We found evidence of a significant protective effect of boiling for Vibrio cholerae infections (OR = 0.31, 95% confidence interval [CI] = 0.13–0.79, N = 4 studies), Blastocystis (OR = 0.35, 95% CI = 0.17–0.69, N = 3), protozoal infections overall (pooled OR = 0.61, 95% CI = 0.43–0.86, N = 11), viral infections overall (pooled OR = 0.83, 95% CI = 0.7–0.98, N = 4), and nonspecific diarrheal outcomes (OR = 0.58, 95% CI = 0.45–0.77, N = 7). We found no evidence of a protective effect for helminthic infections. Although our study was limited by the use of self-reported boiling and non-experimental designs, the evidence suggests that boiling provides measureable health benefits for pathogens whose transmission routes are primarily water based. Consequently, we believe a randomized controlled trial of boiling adherence and health outcomes is needed.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective analysis of data from 145 countries

          Objective To estimate the burden of diarrhoeal diseases from exposure to inadequate water, sanitation and hand hygiene in low- and middle-income settings and provide an overview of the impact on other diseases. Methods For estimating the impact of water, sanitation and hygiene on diarrhoea, we selected exposure levels with both sufficient global exposure data and a matching exposure-risk relationship. Global exposure data were estimated for the year 2012, and risk estimates were taken from the most recent systematic analyses. We estimated attributable deaths and disability-adjusted life years (DALYs) by country, age and sex for inadequate water, sanitation and hand hygiene separately, and as a cluster of risk factors. Uncertainty estimates were computed on the basis of uncertainty surrounding exposure estimates and relative risks. Results In 2012, 502 000 diarrhoea deaths were estimated to be caused by inadequate drinking water and 280 000 deaths by inadequate sanitation. The most likely estimate of disease burden from inadequate hand hygiene amounts to 297 000 deaths. In total, 842 000 diarrhoea deaths are estimated to be caused by this cluster of risk factors, which amounts to 1.5% of the total disease burden and 58% of diarrhoeal diseases. In children under 5 years old, 361 000 deaths could be prevented, representing 5.5% of deaths in that age group. Conclusions This estimate confirms the importance of improving water and sanitation in low- and middle-income settings for the prevention of diarrhoeal disease burden. It also underscores the need for better data on exposure and risk reductions that can be achieved with provision of reliable piped water, community sewage with treatment and hand hygiene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Food-borne diseases — The challenges of 20 years ago still persist while new ones continue to emerge

            The burden of diseases caused by food-borne pathogens remains largely unknown. Importantly data indicating trends in food-borne infectious intestinal disease is limited to a few industrialised countries, and even fewer pathogens. It has been predicted that the importance of diarrhoeal disease, mainly due to contaminated food and water, as a cause of death will decline worldwide. Evidence for such a downward trend is limited. This prediction presumes that improvements in the production and retail of microbiologically safe food will be sustained in the developed world and, moreover, will be rolled out to those countries of the developing world increasingly producing food for a global market. In this review evidence is presented to indicate that the microbiological safety of food remains a dynamic situation heavily influenced by multiple factors along the food chain from farm to fork. Sustaining food safety standards will depend on constant vigilance maintained by monitoring and surveillance but, with the rising importance of other food-related issues, such as food security, obesity and climate change, competition for resources in the future to enable this may be fierce. In addition the pathogen populations relevant to food safety are not static. Food is an excellent vehicle by which many pathogens (bacteria, viruses/prions and parasites) can reach an appropriate colonisation site in a new host. Although food production practices change, the well-recognised food-borne pathogens, such as Salmonella spp. and Escherichia coli, seem able to evolve to exploit novel opportunities, for example fresh produce, and even generate new public health challenges, for example antimicrobial resistance. In addition, previously unknown food-borne pathogens, many of which are zoonotic, are constantly emerging. Current understanding of the trends in food-borne diseases for bacterial, viral and parasitic pathogens has been reviewed. The bacterial pathogens are exemplified by those well-recognized by policy makers; i.e. Salmonella, Campylobacter, E. coli and Listeria monocytogenes. Antimicrobial resistance in several bacterial food-borne pathogens (Salmonella, Campylobacter, Shigella and Vibrio spp., methicillin resistant Staphylcoccus aureas, E. coli and Enterococci) has been discussed as a separate topic because of its relative importance to policy issues. Awareness and surveillance of viral food-borne pathogens is generally poor but emphasis is placed on Norovirus, Hepatitis A, rotaviruses and newly emerging viruses such as SARS. Many food-borne parasitic pathogens are known (for example Ascaris, Cryptosporidia and Trichinella) but few of these are effectively monitored in foods, livestock and wildlife and their epidemiology through the food-chain is poorly understood. The lessons learned and future challenges in each topic are debated. It is clear that one overall challenge is the generation and maintenance of constructive dialogue and collaboration between public health, veterinary and food safety experts, bringing together multidisciplinary skills and multi-pathogen expertise. Such collaboration is essential to monitor changing trends in the well-recognised diseases and detect emerging pathogens. It will also be necessary understand the multiple interactions these pathogens have with their environments during transmission along the food chain in order to develop effective prevention and control strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Millions dead: how do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution.

              In the Comparative Risk Assessment (CRA) done as part of the Global Burden of Disease project (GBD-2010), the global and regional burdens of household air pollution (HAP) due to the use of solid cookfuels, were estimated along with 60+ other risk factors. This article describes how the HAP CRA was framed; how global HAP exposures were modeled; how diseases were judged to have sufficient evidence for inclusion; and how meta-analyses and exposure-response modeling were done to estimate relative risks. We explore relationships with the other air pollution risk factors: ambient air pollution, smoking, and secondhand smoke. We conclude with sensitivity analyses to illustrate some of the major uncertainties and recommendations for future work. We estimate that in 2010 HAP was responsible for 3.9 million premature deaths and ∼4.8% of lost healthy life years (DALYs), ranking it highest among environmental risk factors examined and one of the major risk factors of any type globally.
                Bookmark

                Author and article information

                Journal
                Am J Trop Med Hyg
                Am. J. Trop. Med. Hyg
                tpmd
                tropmed
                The American Journal of Tropical Medicine and Hygiene
                The American Society of Tropical Medicine and Hygiene
                0002-9637
                1476-1645
                08 November 2017
                05 September 2017
                05 September 2017
                : 97
                : 5
                : 1362-1377
                Affiliations
                [1 ]Division of Epidemiology, School of Public Health, University of California at Berkeley, Berkeley, California;
                [2 ]Department of Environmental Science, Policy and Management, University of California at Berkeley, Berkeley, California
                Author notes
                [* ]Address correspondence to Alasdair Cohen, Division of Epidemiology, School of Public Health, University of California at Berkeley, 50 University Hall, Berkeley, CA 94720-7360. E-mail: alasdair.cohen@ 123456linacre.oxon.org

                Authors’ addresses: Alasdair Cohen and John M. Colford, School of Public Health, University of California at Berkeley, Berkeley, CA, E-mails: alasdaircohen@ 123456berkeley.edu and jcolford@ 123456berkeley.edu .

                Article
                tpmd170190
                10.4269/ajtmh.17-0190
                5817760
                29016318
                7f9be8aa-f83e-4329-8203-164ef2ab3afd
                © The American Society of Tropical Medicine and Hygiene

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 March 2017
                : 05 June 2017
                Page count
                Pages: 16
                Categories
                Articles

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article