16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Personal-Level Protective Actions Against Particulate Matter Air Pollution Exposure: A Scientific Statement From the American Heart Association

      , , , , , , , , , , On behalf of the American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; and Stroke Council
      Circulation
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the publication of the last American Heart Association scientific statement on air pollution and cardiovascular disease in 2010, unequivocal evidence of the causal role of fine particulate matter air pollution (PM 2.5 , or particulate matter ≤2.5 μm in diameter) in cardiovascular disease has emerged. There is a compelling case to provide the public with practical personalized approaches to reduce the health effects of PM 2.5 . Such interventions would be applicable not only to individuals in heavily polluted countries, high-risk or susceptible individuals living in cleaner environments, and microenvironments with higher pollution exposures, but also to those traveling to locations with high levels of PM 2.5 . The overarching motivation for this document is to summarize the current evidence supporting personal-level strategies to prevent the adverse cardiovascular effects of PM 2.5 , guide the use of the most proven/viable approaches, obviate the use of ineffective measures, and avoid unwarranted interventions. The significance of this statement relates not only to the global importance of PM 2.5 , but also to its focus on the most tested interventions and viable approaches directed at particulate matter air pollution. The writing group sought to provide expert consensus opinions on personal-level measures recognizing the current uncertainty and limited evidence base for many interventions. In doing so, the writing group acknowledges that its intent is to assist other agencies charged with protecting public health, without minimizing the personal choice considerations of an individual who may decide to use these interventions in the face of ongoing air pollution exposure.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015

          Summary Background Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. Methods We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 μm (PM2·5) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure–response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure–response functions spanning the global range of exposure. Findings Ambient PM2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000–422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. Interpretation Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will occur in the most polluted countries unless PM2·5 values are decreased substantially, but there is potential for substantial health benefits from exposure reduction. Funding Bill & Melinda Gates Foundation and Health Effects Institute.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association.

            In 2004, the first American Heart Association scientific statement on "Air Pollution and Cardiovascular Disease" concluded that exposure to particulate matter (PM) air pollution contributes to cardiovascular morbidity and mortality. In the interim, numerous studies have expanded our understanding of this association and further elucidated the physiological and molecular mechanisms involved. The main objective of this updated American Heart Association scientific statement is to provide a comprehensive review of the new evidence linking PM exposure with cardiovascular disease, with a specific focus on highlighting the clinical implications for researchers and healthcare providers. The writing group also sought to provide expert consensus opinions on many aspects of the current state of science and updated suggestions for areas of future research. On the basis of the findings of this review, several new conclusions were reached, including the following: Exposure to PM <2.5 microm in diameter (PM(2.5)) over a few hours to weeks can trigger cardiovascular disease-related mortality and nonfatal events; longer-term exposure (eg, a few years) increases the risk for cardiovascular mortality to an even greater extent than exposures over a few days and reduces life expectancy within more highly exposed segments of the population by several months to a few years; reductions in PM levels are associated with decreases in cardiovascular mortality within a time frame as short as a few years; and many credible pathological mechanisms have been elucidated that lend biological plausibility to these findings. It is the opinion of the writing group that the overall evidence is consistent with a causal relationship between PM(2.5) exposure and cardiovascular morbidity and mortality. This body of evidence has grown and been strengthened substantially since the first American Heart Association scientific statement was published. Finally, PM(2.5) exposure is deemed a modifiable factor that contributes to cardiovascular morbidity and mortality.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Lancet Commission on pollution and health

                Bookmark

                Author and article information

                Journal
                Circulation
                Circulation
                Ovid Technologies (Wolters Kluwer Health)
                0009-7322
                1524-4539
                December 08 2020
                December 08 2020
                : 142
                : 23
                Article
                10.1161/CIR.0000000000000931
                33150789
                7f809f5a-bb35-4fd8-b58b-6741469a766e
                © 2020
                History

                Comments

                Comment on this article