17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Extracellular vesicles (EVs) are intercellular communicators with key functions in physiological and pathological processes and have recently garnered interest because of their diagnostic and therapeutic potential. The past decade has brought about the development and commercialization of a wide array of methods to isolate EVs from serum. Which subpopulations of EVs are captured strongly depends on the isolation method, which in turn determines how suitable resulting samples are for various downstream applications. To help clinicians and scientists choose the most appropriate approach for their experiments, isolation methods need to be comparatively characterized. Few attempts have been made to comprehensively analyse vesicular microRNAs (miRNAs) in patient biofluids for biomarker studies. To address this discrepancy, we set out to benchmark the performance of several isolation principles for serum EVs in healthy individuals and critically ill patients. Here, we compared five different methods of EV isolation in combination with two RNA extraction methods regarding their suitability for biomarker discovery-focused miRNA sequencing as well as biological characteristics of captured vesicles. Our findings reveal striking method-specific differences in both the properties of isolated vesicles and the ability of associated miRNAs to serve in biomarker research. While isolation by precipitation and membrane affinity was highly suitable for miRNA-based biomarker discovery, methods based on size-exclusion chromatography failed to separate patients from healthy volunteers. Isolated vesicles differed in size, quantity, purity and composition, indicating that each method captured distinctive populations of EVs as well as additional contaminants. Even though the focus of this work was on transcriptomic profiling of EV-miRNAs, our insights also apply to additional areas of research. We provide guidance for navigating the multitude of EV isolation methods available today and help researchers and clinicians make an informed choice about which strategy to use for experiments involving critically ill patients.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents

          Exosomes play a role in cell-to-cell signaling and serve as possible biomarkers. Isolating exosomes with reliable quality and substantial concentration is a major challenge. Our purpose is to compare the exosomes extracted by three different exosome isolation kits (miRCURY, ExoQuick, and Invitrogen Total Exosome Isolation Reagent) and differential ultracentrifugation (UC) using six different volumes of a non-cancerous human serum (5 ml, 1 ml, 500 μl, 250 μl, 100 μl, and 50 μl) and three different volumes (1 ml, 500 μl and 100 μl) of six individual commercial serum samples collected from human donors. The smaller starting volumes (100 μl and 50 μl) are used to mimic conditions of limited availability of heterogeneous biological samples. The isolated exosomes were characterized based upon size, quantity, zeta potential, CD63 and CD9 protein expression, and exosomal RNA (exRNA) quality and quantity using several complementary methods: nanoparticle tracking analysis (NTA) with ZetaView, western blot, transmission electron microscopy (TEM), the Agilent Bioanalyzer system, and droplet digital PCR (ddPCR). Our NTA results showed that all isolation techniques produced exosomes within the expected size range (40–150 nm). The three kits, though, produced a significantly higher yield (80–300 fold) of exosomes as compared to UC for all serum volumes, except 5 mL. We also found that exosomes isolated by the different techniques and serum volumes had similar zeta potentials to previous studies. Western blot analysis and TEM immunogold labelling confirmed the expression of two common exosomal protein markers, CD63 and CD9, in samples isolated by all techniques. All exosome isolations yielded high quality exRNA, containing mostly small RNA with a peak between 25 and 200 nucleotides in size. ddPCR results indicated that exosomes isolated from similar serum volumes but different isolation techniques rendered similar concentrations of two selected exRNA: hsa-miR-16 and hsa-miR-451. In summary, the three commercial exosome isolation kits are viable alternatives to UC, even when limited amounts of biological samples are available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of serum exosome isolation methods for microRNA profiling.

            Exosomes are small membrane bound vesicles secreted by most cell types. Exosomes contain various functional proteins, mRNAs and microRNAs (miRNAs) that could be used for diagnostic and therapeutic purposes. Currently, a standard method for serum exosome isolation is differential ultracentrifugation, but a search for alternative, less time-consuming and labour extensive exosomal isolation method for use in clinical settings is ongoing. The effect of serum exosome isolation method on obtained miRNA profile is not yet clear. The aim of this study was to determine to which extent selected exosome isolation methods influence the serum exosomal miRNA profile. Exosomes were isolated from blood serum of healthy individuals by ultracentrifugation and ExoQuick Precipitation methods. The expression profile of 375 miRNAs was determined by real time PCR using Exiqon miRCURY LNA™ microRNA Human panel I assays. Although a strong correlation of exosomal miRNA profiles was observed between the two isolation methods, distinct clusters of miRNA levels between the used methods were identified. The detected levels of two miRNAs, miR-92a and miR-486-5p, were significantly influenced by the exosome isolation method used. Both exosome isolation methods are suitable for serum exosomal miRNA profiling. Differences found in miRNA patterns between the two methods indicate that the observed exosomal miRNA profile is slightly affected by the extracellular vesicle isolation method. © 2013.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Charge-based precipitation of extracellular vesicles

              Vesicular-mediated communication between cells appears critical in many biological processes. Extracellular vesicles (EVs) released from healthy and diseased cells are involved in a network of exchange of biologically active molecules. Since EVs present in biological fluids carry the signature of the cell of origin, they are potential biomarkers for ongoing physiological or pathological processes. Despite the knowledge on EV biology accrued in recent years, techniques of EV purification remain a challenge and all the described methods have some advantages and disadvantages. In the present study, we described a method based on charge precipitation of EVs from biological fluids and from cell supernatants in comparison with the differential ultracentrifugation, which is considered the gold standard for EV purification. The analysis of ζ-potential revealed that EVs have a negative charge that allows the interaction with a positively charged molecule, such as protamine. Protamine was shown to induce EV precipitation from serum and saliva and from cell culture media without the need for ultracentrifugation. EV resuspension was facilitated when protamine (P) precipitation was performed in the presence of PEG 35,000 Da (P/PEG precipitation). The recovery of precipitated EVs evaluated by NanoSight analysis was more efficient than that obtained by ultracentrifugation. By electron microscopy the size of EVs was similar after both methods were used, and the expression of CD63, CD9 and CD81 exosomal markers in the P/PEG-precipitated EVs indicated an enrichment in exosomes. The RNA recovery of P/PEG-precipitated EVs was similar to that of EVs isolated by ultracentrifugation. In addition, P/PEG-precipitated EVs retained the biological activity in vitro as observed by the induction of wound closure by keratinocytes and of proliferation of tubular epithelial cells. In conclusion, charge-based precipitation of EVs has the merit of simplicity and avoids the requirement of expensive equipments and may be used for the efficient isolation of EVs from small biological samples.
                Bookmark

                Author and article information

                Journal
                J Extracell Vesicles
                J Extracell Vesicles
                ZJEV
                zjev20
                Journal of Extracellular Vesicles
                Taylor & Francis
                2001-3078
                2018
                04 June 2018
                : 7
                : 1
                : 1481321
                Affiliations
                [a ]Institute of Human Genetics, University Hospital, LMU Munich , Munich, Germany
                [b ]Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich , Freising, Germany
                [c ]Dr. von Hauner Children’s Hospital, LMU Munich ,  Munich, Germany
                [d ]Department of Anesthesiology, University Hospital, LMU Munich , Munich, Germany
                [e ]Chair of Animal Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich , Freising, Germany
                [f ]IMGM Laboratories GmbH , Planegg, Germany
                Author notes
                CONTACT Dominik Buschmann dominik.buschmann@ 123456wzw.tum.de Institute of Human Genetics, University Hospital, LMU , Munich, Germany
                Author information
                http://orcid.org/0000-0003-0460-6459
                http://orcid.org/0000-0003-3878-0148
                http://orcid.org/0000-0002-6274-5919
                http://orcid.org/0000-0002-0741-616X
                http://orcid.org/0000-0003-0649-6206
                http://orcid.org/0000-0003-3741-287X
                http://orcid.org/0000-0003-4311-6276
                http://orcid.org/0000-0002-3192-1019
                http://orcid.org/0000-0002-6538-0652
                http://orcid.org/0000-0002-9113-9643
                Article
                1481321
                10.1080/20013078.2018.1481321
                5990937
                29887978
                7f78ea38-0a42-44a3-bc21-425e7fe62721
                © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 February 2018
                : 18 May 2018
                Page count
                Figures: 9, Tables: 2, References: 94, Pages: 19
                Funding
                Funded by: German Federal Ministry of Economy and Energy 10.13039/501100006360
                Award ID: ZF4247001MD6
                This work was supported by the German Federal Ministry of Economy and Energy under Grant ZF4247001MD6.
                Categories
                Research Article

                extracellular vesicle,exosome isolation,mirna,small rna sequencing,next-generation sequencing,sepsis,biomarker,precipitation,ultracentrifugation

                Comments

                Comment on this article