19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mapping Yeast N-Glycosites with Isotopically Recoded Glycans*

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Asparagine-linked glycosylation is a common post-translational modification of proteins; in addition to participating in key macromolecular interactions, N-glycans contribute to protein folding, trafficking, and stability. Despite their importance, few N-glycosites have been experimentally mapped in the Saccharomyces cerevisiae proteome. Factors including glycan heterogeneity, low abundance, and low occupancy can complicate site mapping. Here, we report a novel mass spectrometry-based strategy for detection of N-glycosites in the yeast proteome. Our method imparts N-glycopeptide mass envelopes with a pattern that is computationally distinguishable from background ions. Isotopic recoding is achieved via metabolic incorporation of a defined mixture of N-acetylglucosamine isotopologs into N-glycans. Peptides bearing the recoded envelopes are specifically targeted for fragmentation, facilitating high confidence site mapping. This strategy requires no chemical modification of the N-glycans or stringent sample enrichment. Further, enzymatically simplified N-glycans are preserved on peptides. Using this approach, we identify 133 N-glycosites spanning 58 proteins, nearly doubling the number of experimentally observed N-glycosites in the yeast proteome.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Universal Protein Resource (UniProt) in 2010

          The primary mission of UniProt is to support biological research by maintaining a stable, comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase, with extensive cross-references and querying interfaces freely accessible to the scientific community. UniProt is produced by the UniProt Consortium which consists of groups from the European Bioinformatics Institute (EBI), the Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR). UniProt is comprised of four major components, each optimized for different uses: the UniProt Archive, the UniProt Knowledgebase, the UniProt Reference Clusters and the UniProt Metagenomic and Environmental Sequence Database. UniProt is updated and distributed every 3 weeks and can be accessed online for searches or download at http://www.uniprot.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Assigning significance to peptides identified by tandem mass spectrometry using decoy databases.

            Automated methods for assigning peptides to observed tandem mass spectra typically return a list of peptide-spectrum matches, ranked according to an arbitrary score. In this article, we describe methods for converting these arbitrary scores into more useful statistical significance measures. These methods employ a decoy sequence database as a model of the null hypothesis, and use false discovery rate (FDR) analysis to correct for multiple testing. We first describe a simple FDR inference method and then describe how estimating and taking into account the percentage of incorrectly identified spectra in the entire data set can lead to increased statistical power.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling

              Protein ubiquitination is a post-translational modification (PTM) that regulates various aspects of protein function by different mechanisms. Global profiling of PTMs usually relies on purification and sequencing of PTM-containing peptides from proteolytic digests. Characterization of ubiquitination has lagged behind that of smaller PTMs, such as phosphorylation and acetylation, largely because of the difficulty of isolating and identifying peptides derived from the ubiquitinated portion of proteins. To address this issue, we have generated a monoclonal antibody that can enrich for peptides containing lysine residues modified by diglycine, an adduct left at sites of ubiquitination after trypsin digestion. We use mass spectrometry to identify 374 diglycine-modified lysines on 236 ubiquitinated proteins from HEK293 cells, including 80 proteins containing multiple sites of ubiquitination. Seventy-two percent of these proteins and 92% of the ubiquitination sites do not appear to have been reported previously. Ubiquitin remnant profiling of the multi-ubiquitinated proteins proliferating cell nuclear antigen (PCNA) and tubulin α-1A reveals differential regulation of ubiquitination at specific sites by microtubule inhibitors, demonstrating the effectiveness of our method to characterize the dynamics of lysine ubiquitination.
                Bookmark

                Author and article information

                Journal
                Mol Cell Proteomics
                Mol. Cell Proteomics
                mcprot
                mcprot
                MCP
                Molecular & Cellular Proteomics : MCP
                The American Society for Biochemistry and Molecular Biology
                1535-9476
                1535-9484
                June 2012
                19 January 2012
                19 January 2012
                : 11
                : 6
                : M111.015339
                Affiliations
                [1]From the Departments of ‡Chemistry and
                [2]¶Molecular and Cell Biology and
                [3]the ‖Howard Hughes Medical Institute, University of California, Berkeley, California 94720
                Author notes
                ** To whom correspondence should be addressed. Tel.: 510-643-1682; Fax: 510-643-2628; E-mail: crb@ 123456berkeley.edu .

                § These authors contributed equally to this work.

                Article
                M111.015339
                10.1074/mcp.M111.015339
                3433913
                22261724
                7ef02418-a469-43b9-bf72-3c2721dc1ce7
                © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

                Creative Commons Attribution Non-Commercial License applies to Author Choice Articles

                History
                : 26 October 2011
                : 15 January 2012
                Funding
                Funded by: National Institutes of Health
                Award ID: GM066047
                Categories
                Research

                Molecular biology
                Molecular biology

                Comments

                Comment on this article