1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In-Depth Temporal Transcriptome Profiling of an Alphaherpesvirus Using Nanopore Sequencing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work, a long-read sequencing (LRS) technique based on the Oxford Nanopore Technology MinION platform was used for quantifying and kinetic characterization of the poly(A) fraction of bovine alphaherpesvirus type 1 (BoHV-1) lytic transcriptome across a 12-h infection period. Amplification-based LRS techniques frequently generate artefactual transcription reads and are biased towards the production of shorter amplicons. To avoid these undesired effects, we applied direct cDNA sequencing, an amplification-free technique. Here, we show that a single promoter can produce multiple transcription start sites whose distribution patterns differ among the viral genes but are similar in the same gene at different timepoints. Our investigations revealed that the circ gene is expressed with immediate–early (IE) kinetics by utilizing a special mechanism based on the use of the promoter of another IE gene (bicp4) for the transcriptional control. Furthermore, we detected an overlap between the initiation of DNA replication and the transcription from the bicp22 gene, which suggests an interaction between the two molecular machineries. This study developed a generally applicable LRS-based method for the time-course characterization of transcriptomes of any organism.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Minimap2: pairwise alignment for nucleotide sequences

          Heng Li (2018)
          Recent advances in sequencing technologies promise ultra-long reads of ∼100 kb in average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 Mb in length. Existing alignment programs are unable or inefficient to process such data at scale, which presses for the development of new alignment algorithms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complex heatmaps reveal patterns and correlations in multidimensional genomic data.

            Parallel heatmaps with carefully designed annotation graphics are powerful for efficient visualization of patterns and relationships among high dimensional genomic data. Here we present the ComplexHeatmap package that provides rich functionalities for customizing heatmaps, arranging multiple parallel heatmaps and including user-defined annotation graphics. We demonstrate the power of ComplexHeatmap to easily reveal patterns and correlations among multiple sources of information with four real-world datasets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Pfam: The protein families database in 2021

              Abstract The Pfam database is a widely used resource for classifying protein sequences into families and domains. Since Pfam was last described in this journal, over 350 new families have been added in Pfam 33.1 and numerous improvements have been made to existing entries. To facilitate research on COVID-19, we have revised the Pfam entries that cover the SARS-CoV-2 proteome, and built new entries for regions that were not covered by Pfam. We have reintroduced Pfam-B which provides an automatically generated supplement to Pfam and contains 136 730 novel clusters of sequences that are not yet matched by a Pfam family. The new Pfam-B is based on a clustering by the MMseqs2 software. We have compared all of the regions in the RepeatsDB to those in Pfam and have started to use the results to build and refine Pfam repeat families. Pfam is freely available for browsing and download at http://pfam.xfam.org/.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                VIRUBR
                Viruses
                Viruses
                MDPI AG
                1999-4915
                June 2022
                June 13 2022
                : 14
                : 6
                : 1289
                Article
                10.3390/v14061289
                35746760
                7edf0706-7f4e-4821-9c2d-cadca5227704
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article