31
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A biofilm is a group of microorganisms, that causes health problems for the patients with indwelling medical devices via attachment of cells to the surface matrix. It increases the resistance of a microorganism for antimicrobial agents and developed the human infection. Current strategies are removed or prevent the microbial colonies from the medical devices, which are attached to the surfaces. This will improve the clinical outcomes in favor of the patients suffering from serious infectious diseases. Moreover, the identification and inhibition of genes, which have the major role in biofilm formation, could be the effective approach for health care systems. In a current review article, we are highlighting the biofilm matrix and molecular mechanism of antimicrobial resistance in bacterial biofilms.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Persister cells, dormancy and infectious disease.

          Kim Lewis (2007)
          Several well-recognized puzzles in microbiology have remained unsolved for decades. These include latent bacterial infections, unculturable microorganisms, persister cells and biofilm multidrug tolerance. Accumulating evidence suggests that these seemingly disparate phenomena result from the ability of bacteria to enter into a dormant (non-dividing) state. The molecular mechanisms that underlie the formation of dormant persister cells are now being unravelled and are the focus of this Review.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Biofilms: Microbial Life on Surfaces

            Microorganisms attach to surfaces and develop biofilms. Biofilm-associated cells can be differentiated from their suspended counterparts by generation of an extracellular polymeric substance (EPS) matrix, reduced growth rates, and the up- and down- regulation of specific genes. Attachment is a complex process regulated by diverse characteristics of the growth medium, substratum, and cell surface. An established biofilm structure comprises microbial cells and EPS, has a defined architecture, and provides an optimal environment for the exchange of genetic material between cells. Cells may also communicate via quorum sensing, which may in turn affect biofilm processes such as detachment. Biofilms have great importance for public health because of their role in certain infectious diseases and importance in a variety of device-related infections. A greater understanding of biofilm processes should lead to novel, effective control strategies for biofilm control and a resulting improvement in patient management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persister cells and tolerance to antimicrobials.

              Bacterial populations produce persister cells that neither grow nor die in the presence of microbicidal antibiotics. Persisters are largely responsible for high levels of biofilm tolerance to antimicrobials, but virtually nothing was known about their biology. Tolerance of Escherichia coli to ampicillin and ofloxacin was tested at different growth stages to gain insight into the nature of persisters. The number of persisters did not change in lag or early exponential phase, and increased dramatically in mid-exponential phase. Similar dynamics were observed with Pseudomonas aeruginosa (ofloxacin) and Staphylococcus aureus (ciprofloxacin and penicillin). This shows that production of persisters depends on growth stage. Maintaining a culture of E. coli at early exponential phase by reinoculation eliminated persisters. This suggests that persisters are not at a particular stage in the cell cycle, neither are they defective cells nor cells created in response to antibiotics. Our data indicate that persisters are specialized survivor cells.
                Bookmark

                Author and article information

                Journal
                Open Microbiol J
                Open Microbiol J
                TOMICROJ
                The Open Microbiology Journal
                Bentham Open
                1874-2858
                28 April 2017
                2017
                : 11
                : 53-62
                Affiliations
                [1 ]Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi- 221 005 UP India
                [2 ]Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
                [3 ]Department of Obstetrics and Gynecology; Morehouse School of Medicine, Atlanta, GA, USA
                Author notes
                [* ]Address correspondence to this author at the Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine 720 Westview Drive SW, Atlanta, GA 30310, USA; Tel: 404-756-6661; Fax: 404-752-1179; E-mail: rsingh@ 123456msm.edu
                Article
                TOMICROJ-11-53
                10.2174/1874285801711010053
                5427689
                28553416
                7e8d8c7d-611b-4eb2-be21-606e200fb6f7
                © 2017 Singh et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 October 2016
                : 15 February 2017
                : 15 February 2017
                Categories
                Article

                Microbiology & Virology
                biofilm,quorum sensing,efflux pump,heterogeneity,resistance
                Microbiology & Virology
                biofilm, quorum sensing, efflux pump, heterogeneity, resistance

                Comments

                Comment on this article