2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metabolic Profiling of Urinary Chiral Amino-Containing Biomarkers for Gastric Cancer Using a Sensitive Chiral Chlorine-Labeled Probe by HPLC-MS/MS

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          HMDB: the Human Metabolome Database

          The Human Metabolome Database (HMDB) is currently the most complete and comprehensive curated collection of human metabolite and human metabolism data in the world. It contains records for more than 2180 endogenous metabolites with information gathered from thousands of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the HMDB also contains an extensive collection of experimental metabolite concentration data compiled from hundreds of mass spectra (MS) and Nuclear Magnetic resonance (NMR) metabolomic analyses performed on urine, blood and cerebrospinal fluid samples. This is further supplemented with thousands of NMR and MS spectra collected on purified, reference metabolites. Each metabolite entry in the HMDB contains an average of 90 separate data fields including a comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, biofluid concentrations, disease associations, pathway information, enzyme data, gene sequence data, SNP and mutation data as well as extensive links to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided. The HMDB is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. The HMDB is available at:
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global metabolic profiling procedures for urine using UPLC-MS.

            The production of 'global' metabolite profiles involves measuring low molecular-weight metabolites (<1 kDa) in complex biofluids/tissues to study perturbations in response to physiological challenges, toxic insults or disease processes. Information-rich analytical platforms, such as mass spectrometry (MS), are needed. Here we describe the application of ultra-performance liquid chromatography-MS (UPLC-MS) to urinary metabolite profiling, including sample preparation, stability/storage and the selection of chromatographic conditions that balance metabolome coverage, chromatographic resolution and throughput. We discuss quality control and metabolite identification, as well as provide details of multivariate data analysis approaches for analyzing such MS data. Using this protocol, the analysis of a sample set in 96-well plate format, would take ca. 30 h, including 1 h for system setup, 1-2 h for sample preparation, 24 h for UPLC-MS analysis and 1-2 h for initial data processing. The use of UPLC-MS for metabolic profiling in this way is not faster than the conventional HPLC-based methods but, because of improved chromatographic performance, provides superior metabolome coverage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent patterns in gastric cancer: a global overview.

              Until the mid-1990s, gastric cancer has been the first cause of cancer death worldwide, although rates had been declining for several decades and gastric cancer has become a relatively rare cancer in North America and in most Northern and Western Europe, but not in Eastern Europe, Russia and selected areas of Central and South America or East Asia. We analyzed gastric cancer mortality in Europe and other areas of the world from 1980 to 2005 using joinpoint regression analysis, and provided updated site-specific incidence rates from 51 selected registries. Over the last decade, the annual percent change (APC) in mortality rate was around -3, -4% for the major European countries. The APC were similar for the Republic of Korea (APC = -4.3%), Australia (-3.7%), the USA (-3.6%), Japan (-3.5%), Ukraine (-3%) and the Russian Federation (-2.8%). In Latin America, the decline was less marked, but constant with APC around -1.6% in Chile and Brazil, -2.3% in Argentina and Mexico and -2.6% in Colombia. Cancers in the fundus and pylorus are more common in high incidence and mortality areas and have been declining more than cardia gastric cancer. Steady downward trends persist in gastric cancer mortality worldwide even in middle aged population, and hence further appreciable declines are likely in the near future.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Proteome Research
                J. Proteome Res.
                American Chemical Society (ACS)
                1535-3893
                1535-3907
                August 06 2021
                July 06 2021
                August 06 2021
                : 20
                : 8
                : 3952-3962
                Affiliations
                [1 ]College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
                [2 ]Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
                [3 ]Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
                Article
                10.1021/acs.jproteome.1c00267
                34229439
                7d071001-ddb5-4b0c-be9c-b45fddb6eec9
                © 2021
                History

                Comments

                Comment on this article