17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A novel phosphotyrosine motif with a critical amino acid at position -2 for the SH2 domain-mediated activation of the tyrosine phosphatase SHP-1.

      The Journal of Biological Chemistry
      Amino Acids, genetics, metabolism, Cell Line, Enzyme Activation, Humans, Intracellular Signaling Peptides and Proteins, Phosphotyrosine, Protein Tyrosine Phosphatase, Non-Receptor Type 11, Protein Tyrosine Phosphatase, Non-Receptor Type 6, Protein Tyrosine Phosphatases, chemistry, SH2 Domain-Containing Protein Tyrosine Phosphatases, Sequence Analysis, T-Lymphocytes, enzymology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SHP-1 is a protein-tyrosine phosphatase associated with inhibition of activation pathways in hematopoietic cells. The catalytic activity of SHP-1 is regulated by its two SH2 (Src homology 2) domains; phosphotyrosine peptides that bind to the SH2 domains activate SHP-1. The consensus sequence (I/V)XYXX(L/V) is present in the cytoplasmic tails of several lymphocyte receptors that interact with the second SH2 domain of SHP-1. In several of these receptors, there are two or three occurrences of the motif. Here we show that the conserved hydrophobic amino acid preceding the phosphotyrosine is critical for binding to and activation of SHP-1 by peptides corresponding to sequences from killer cell inhibitory receptors. The interaction of most SH2 domains with phosphopeptides requires only the phosphotyrosine and the three residues downstream of the tyrosine. In contrast, the shortest peptide able to bind or activate SHP-1 also included the two residues upstream of the phosphotyrosine. A biphosphopeptide corresponding to the cytoplasmic tail of a killer cell inhibitory receptor with the potential to interact simultaneously with both SH2 domains of SHP-1 was the most potent activator of SHP-1. The hydrophobic residue upstream of the tyrosine was also critical in the context of the biphosphopeptide. The contribution of a hydrophobic amino acid two residues upstream of the tyrosine in the SHP-1-binding motif may be an important feature that distinguishes inhibitory receptors from those that provide activation signals.

          Related collections

          Author and article information

          Comments

          Comment on this article