83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Multi-Targeted Antiretroviral Treatment on Gut T Cell Depletion and HIV Reservoir Seeding during Acute HIV Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Limited knowledge exists on early HIV events that may inform preventive and therapeutic strategies. This study aims to characterize the earliest immunologic and virologic HIV events following infection and investigates the usage of a novel therapeutic strategy.

          Methods and Findings

          We prospectively screened 24,430 subjects in Bangkok and identified 40 AHI individuals. Thirty Thais were enrolled (8 Fiebig I, 5 Fiebig II, 15 Fiebig III, 2 Fiebig IV) of whom 15 completed 24 weeks of megaHAART (tenofovir/emtricitabine/efavirenz/raltegravir/maraviroc). Sigmoid biopsies were completed in 24/30 at baseline and 13/15 at week 24.

          At baseline, the median age was 29 years and 83% were MSM. Most were symptomatic (87%), and were infected with R5-tropic (77%) CRF01_AE (70%). Median CD4 was 406 cells/mm 3. HIV RNA was 5.5 log 10 copies/ml. Median total blood HIV DNA was higher in Fiebig III (550 copy/10 6 PBMC) vs. Fiebig I (8 copy/10 6 PBMC) (p = 0.01) while the median %CD4+CCR5+ gut T cells was lower in Fiebig III (19%) vs. Fiebig I (59%) (p = 0.0008).

          After 24 weeks of megaHAART, HIV RNA levels of <50 copies were achieved in 14/15 in blood and 13/13 in gut. Total blood HIV DNA at week 0 predicted reservoir size at week 24 (p<0.001). Total HIV DNA declined significantly and was undetectable in 3 of 15 in blood and 3 of 7 in gut. Frequency of CD4+CCR5+ gut T cells increased from 41% at baseline to 64% at week 24 (p>0.050); subjects with less than 40% at baseline had a significant increase in CD4+CCR5+ T cells from baseline to week 24 (14% vs. 71%, p = 0.02).

          Conclusions

          Gut T cell depletion and HIV reservoir seeding increases with progression of AHI. MegaHAART was associated with immune restoration and reduced reservoir size. Our findings could inform research on strategies to achieve HIV drug-free remission.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection.

          It has recently been established that both acute human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections are accompanied by a dramatic and selective loss of memory CD4+ T cells predominantly from the mucosal surfaces. The mechanism underlying this depletion of memory CD4+ T cells (that is, T-helper cells specific to previously encountered pathogens) has not been defined. Using highly sensitive, quantitative polymerase chain reaction together with precise sorting of different subsets of CD4+ T cells in various tissues, we show that this loss is explained by a massive infection of memory CD4+ T cells by the virus. Specifically, 30-60% of CD4+ memory T cells throughout the body are infected by SIV at the peak of infection, and most of these infected cells disappear within four days. Furthermore, our data demonstrate that the depletion of memory CD4+ T cells occurs to a similar extent in all tissues. As a consequence, over one-half of all memory CD4+ T cells in SIV-infected macaques are destroyed directly by viral infection during the acute phase-an insult that certainly heralds subsequent immunodeficiency. Our findings point to the importance of reducing the cell-associated viral load during acute infection through therapeutic or vaccination strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The immune response during acute HIV-1 infection: clues for vaccine development

            Key Points The early virological factors in HIV-1 infection, including transmission and the nature of the founder virus, can affect the time course of viraemia through the early peak to set point. The identification of patients within the first few weeks of HIV-1 infection has provided early evidence of immune system damage, including massive apoptosis of CD4+ T cells, which is associated with the presence of apoptotic microparticles and TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) in the blood, and damage to germinal centres in mucosal lymphoid tissues. The first innate immune responses include the appearance of acute-phase proteins, early cytokine storm and activation of natural killer (NK) cells. An innate immune response to HIV-1 can be damaging, however, as it can draw susceptible T cells to the infection foci. The first T cell response controls the founder virus by killing infected T cells. However, the T cell response also selects mutational changes in the founder virus, allowing immune evasion. The first B cell response consists of early immune complexes, followed by non-neutralizing antibodies against the founder virus and then the slow development of broadly acting neutralizing antibodies. Development of vaccines that rapidly induce broadly acting neutralizing antibodies might be beneficial in preventing HIV infection. Understanding the early events and immune responses is crucial to devising vaccine strategies that can improve the weak protection offered by current HIV vaccines that are being trialled, such as the RV144 (Thai) efficacy trial.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection.

              The characterization of primary HIV infection by the analysis of serial plasma samples from newly infected persons using multiple standard viral assays. A retrospective study involving two sets of archived samples from HIV-infected plasma donors. (A) 435 samples from 51 donors detected by anti-HIV enzyme immunoassays donated during 1984-1994; (B) 145 specimens from 44 donors detected by p24 antigen screening donated during 1996-1998. Two US plasma products companies. The timepoints of appearance of HIV-1 markers and viral load concentrations during primary HIV infection. The pattern of sequential emergence of viral markers in the 'A' panels was highly consistent, allowing the definition and estimation of the duration of six sequential stages. From the 'B' panels, the viral load at p24 antigen seroconversion was estimated by regression analysis at 10 000 copies/ml (95% CI 2000-93 000) and the HIV replication rate at 0.35 log copies/ml/day, corresponding to a doubling time in the preseroconversion phase of 20.5 h (95% CI 18.2-23.4 h). Consequently, an RNA test with 50 copies/ml sensitivity would detect HIV infection approximately 7 days before a p24 antigen test, and 12 days before a sensitive anti-HIV test. The sequential emergence of assay reactivity allows the classification of primary HIV-1 infection into distinct laboratory stages, which may facilitate the diagnosis of recent infection and stratification of patients enrolled in clinical trials. Quantitative analysis of preseroconversion replication rates of HIV is useful for projecting the yield and predictive value of assays targeting primary HIV infection.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                30 March 2012
                : 7
                : 3
                : e33948
                Affiliations
                [1 ]South East Asia Research Collaboration with Hawaii, Pathumwan, Bangkok, Thailand
                [2 ]The Thai Red Cross AIDS Research Centre, Pathumwan, Bangkok, Thailand
                [3 ]HIV-NAT, Pathumwan, Bangkok, Thailand
                [4 ]Department of Medicine, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
                [5 ]Department of Retrovirology, Armed Forces Research Institute of Medical Sciences – United States Component, Bangkok, Thailand
                [6 ]United States Military HIV Research Program, Rockville, Maryland, United States of America
                [7 ]Vaccine and Gene Therapy Institute, Port St. Lucie, Florida, United States of America
                [8 ]Clinical and Molecular Retrovirology Section/Laboratory of Immunoregulation, Bethesda, Maryland, United States of America
                [9 ]Virus Isolation and Serology Laboratory Applied and Developmental Research Directorate Science Applications International Corporation-Frederick, Inc. National Cancer Institute - Frederick Cancer Research and Development Center, Frederick, Maryland, United States of America
                [10 ]Department of Disease Control, Thailand Ministry of Public Health – United States Centers for Disease Control and Prevention Collaboration, Ministry of Public Health, Amphur Muang, Nonthaburi, Thailand
                [11 ]Memory and Aging Center, University of California at San Francisco, San Francisco, California, United States of America
                [12 ]In Vivo Biology Group, National Institutes of Health, Magnuson Clinical Center, Bethesda, Maryland, United States of America
                University of New South Wales, Australia
                Author notes

                Conceived and designed the experiments: JA AS IS MdS JK VV NM PP. Performed the experiments: JA MdS CV IS RR RD MM N. Chomont NP RS RT WR S Peel FM N. Chomchey. Analyzed the data: S Pinyakorn RP. Contributed reagents/materials/analysis tools: AS CV IS MdS RD MM FvG RS NP RT WR N. Chomont S Peel FM N. Chomchey. Wrote the paper: JA AS MdS N. Chomont JK. Gave input in the protocol development, interpreted the final data analyses and read and critically commented on the paper: JA AS CV IS MdS RR RD MM FvG RS S Peel NP RT WR N. Chomont RP S Pinyakorn VV FM N. Chomchey NM DP JK.

                Article
                PONE-D-11-20716
                10.1371/journal.pone.0033948
                3316511
                22479485
                7c4b2971-b490-42e0-bac9-dca7e82f2af4
                Ananworanich et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 October 2011
                : 20 February 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Immunology
                Immune Cells
                Microbiology
                Virology
                Medicine
                Clinical Immunology
                Immune Cells
                Gastroenterology and Hepatology
                Infectious Diseases
                Viral Diseases
                HIV

                Uncategorized
                Uncategorized

                Comments

                Comment on this article