0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Epigenetics Beyond Fetal Growth Restriction: A Comprehensive Overview

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fetal growth restriction is a pathological condition occurring when the fetus does not reach the genetically determined growth potential. The etiology of fetal growth restriction is expected to be multifactorial and include fetal, maternal, and placental factors, the latter being the most frequent cause of isolated fetal growth restriction. Severe fetal growth restriction has been related to both an increased risk of perinatal morbidity and mortality, and also a greater susceptibility to developing diseases (especially cardio-metabolic and neurological disorders) later in life. In the last decade, emerging evidence has supported the hypothesis of the Developmental Origin of Health and Disease, which states that individual developmental 'programming' takes place via a delicate fine tuning of fetal genetic and epigenetic marks in response to a large variety of 'stressor' exposures during pregnancy. As the placenta is the maternal-fetal interface, it has a crucial role in fetal programming, such that any perturbation altering placental function interferes with both in-utero fetal growth and also with the adult life phenotype. Several epigenetic mechanisms have been highlighted in modulating the dynamic placental epigenome, including alterations in DNA methylation status, post-translational modification of histones, and non-coding RNAs. This review aims to provide a comprehensive and critical overview of the available literature on the epigenetic background of fetal growth restriction. A targeted research strategy was performed using PubMed, MEDLINE, Embase, and The Cochrane Library up to January 2022. A detailed and fully referenced synthesis of available literature following the Scale for the Assessment of Narrative Review Articles guidelines is provided. A variety of epigenetic marks predominantly interfering with placental development, function, and metabolism were found to be potentially associated with fetal growth restriction. Available evidence on the role of environmental exposures in shaping the placental epigenome and the fetal phenotype were also critically discussed. Because of the highly dynamic crosstalk between epigenetic mechanisms and the extra level of complexity in interpreting the final placental transcriptome, a full comprehension of these phenomenon is still lacking and advances in multi-omics approaches are urgently needed. Elucidating the role of epigenetics in the developmental origins of health and disease represents a new challenge for the coming years, with the goal of providing early interventions and prevention strategies and, hopefully, new treatment opportunities.

          Related collections

          Most cited references161

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          An Integrated Encyclopedia of DNA Elements in the Human Genome

          Summary The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure, and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall the project provides new insights into the organization and regulation of our genes and genome, and an expansive resource of functional annotations for biomedical research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA methylation and its basic function.

            In the mammalian genome, DNA methylation is an epigenetic mechanism involving the transfer of a methyl group onto the C5 position of the cytosine to form 5-methylcytosine. DNA methylation regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factor(s) to DNA. During development, the pattern of DNA methylation in the genome changes as a result of a dynamic process involving both de novo DNA methylation and demethylation. As a consequence, differentiated cells develop a stable and unique DNA methylation pattern that regulates tissue-specific gene transcription. In this chapter, we will review the process of DNA methylation and demethylation in the nervous system. We will describe the DNA (de)methylation machinery and its association with other epigenetic mechanisms such as histone modifications and noncoding RNAs. Intriguingly, postmitotic neurons still express DNA methyltransferases and components involved in DNA demethylation. Moreover, neuronal activity can modulate their pattern of DNA methylation in response to physiological and environmental stimuli. The precise regulation of DNA methylation is essential for normal cognitive function. Indeed, when DNA methylation is altered as a result of developmental mutations or environmental risk factors, such as drug exposure and neural injury, mental impairment is a common side effect. The investigation into DNA methylation continues to show a rich and complex picture about epigenetic gene regulation in the central nervous system and provides possible therapeutic targets for the treatment of neuropsychiatric disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of chromatin by histone modifications.

              Chromatin is not an inert structure, but rather an instructive DNA scaffold that can respond to external cues to regulate the many uses of DNA. A principle component of chromatin that plays a key role in this regulation is the modification of histones. There is an ever-growing list of these modifications and the complexity of their action is only just beginning to be understood. However, it is clear that histone modifications play fundamental roles in most biological processes that are involved in the manipulation and expression of DNA. Here, we describe the known histone modifications, define where they are found genomically and discuss some of their functional consequences, concentrating mostly on transcription where the majority of characterisation has taken place.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Molecular Diagnosis & Therapy
                Mol Diagn Ther
                Springer Science and Business Media LLC
                1177-1062
                1179-2000
                November 2022
                August 26 2022
                November 2022
                : 26
                : 6
                : 607-626
                Article
                10.1007/s40291-022-00611-4
                36028645
                7c183dce-c645-44da-be65-ddf69c48ea7e
                © 2022

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article