40
views
0
recommends
+1 Recommend
2 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Orchid bee baits attracting bees of the genus Megalopta (Hymenoptera, Halictidae) in Bauru region, São Paulo, Brazil: abundance, seasonality, and the importance of odors for dim-light bees Translated title: Abelhas do gênero Megalopta (Hymenoptera, Halictidae) atraídas por iscas químicas usadas para euglossíneos na região de Bauru, SP: abundância, sazonalidade e importância de odores para abelhas crepusculares

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nocturnal bees in the genus Megalopta Smith, 1853 are generally collected using artificial light sources. However, between 1993 and 2000, a total of 946 females (no males were captured) were captured using aromatic baits commonly used for orchid bees (Euglossini) in five localities in Bauru region, São Paulo, Brazil. Aromatic compounds used in bait traps were: benzyl acetate, eucalyptol, eugenol, skatole, methyl salicylate, and vanillin. The Megalopta species collected were: M. guimaraesi (71.2% of total number of specimens), M. amoena (28.1%), and M. aegis (0.6%). Using the data from these traps, we showed that there was a positive and significant correlation between the abundance of individuals and meteorological factors, rainfall and temperature. Bees were more commonly collected in the spring (September to December) and summer (December to March) than in the autumn and winter, the latter characterized for being a drier and colder period. Variations in the abundance were also detected among localities and years. The most attractive compounds were eugenol (54%), methyl salicylate (22%), and eucalyptol (16%). The ability to detect smells may have an important role in searching for flowers during dim-light conditions. We suggest the use of aromatic compounds in future studies on the biology of Megalopta in the Neotropical region.

          Translated abstract

          Abelhas noturnas do gênero Megalopta (Smith, 1853) são geralmente coletadas usando fontes artificiais de luz. Porém entre os anos de 1993 e 2000, um total de 946 fêmeas de Megalopta foram capturadas (machos não foram capturados) usando iscas aromáticas frequentemente usadas para atração de machos de Euglossini, em cinco localidades na região de Bauru, São Paulo, Brasil. Os compostos aromáticos utilizados foram: acetato de benzila, eucaliptol, eugenol, escatol, salicilato de metila e vanilina. As espécies encontradas foram M. guimaraesi (71.2% do total de indivíduos), M. amoena (28.1%) and M. aegis (0.6%). De modo geral, os resultados mostraram correlação positiva e significativa entre a abundância de indivíduos e os fatores meteorológicos considerados - precipitação pluviométrica e temperatura. As abelhas foram geralmente capturadas em maior número na primavera e verão e raramente no outono e inverno, período mais seco e frio. Variações na abundância também foram detectadas entre as localidades e entre os anos estudados. As substâncias mais atrativas foram: eugenol (54%), salicilato de metila (22%) e eucaliptol (16%). A capacidade de detectar cheiros pode ter um importante papel na busca por flores em condições crepusculares. Sugerimos o uso destes compostos aromáticos em pesquisas futuras sobre a biologia de Megalopta na região Neotropical.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Book: not found

          The Bees of the World

          A comprehensive, worldwide treatment of all groups of bees - 1200 genera and subgenera, including more than 16,000 species. In extensive introductory sections, Charles D. Michener examines the evolution of bees from wasps, the relations of the families of bees to one another, the evolution of bees in relation to that of flowering plants, the nesting behaviour of solitary and social bees, and the structure of immature and adult bees. Drawing on these considerations as well as the fossil record, he speculates on the attributes of the protobee, the common ancestor of all bees. He also cites the major literature on bee biology and describes the need for further research on the systematics and natural history of bees, including their importance as pollinators of crops and natural vegetation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megalopta genalis.

            Using the combined Golgi-electron microscopy technique, we have determined the three-dimensional dendritic fields of the short visual fibres (svf 1-3) and first-order interneurons or L-fibres (L1-4) within the first optic ganglion (lamina) of the nocturnal bee Megalopta genalis. Serial cross sections have revealed that the svf type 2 branches into one adjacent neural unit (cartridge) in layer A, the most distal of the three lamina layers A, B and C. All L-fibres, except L1-a, exhibit wide lateral branching into several neighbouring cartridges. L1-b shows a dendritic field of seven cartridges in layers A and C, dendrites of L2 target 13 cartridges in layer A, L3 branches over a total of 12 cartridges in layer A and three in layer C and L4 has the largest dendritic field size of 18 cartridges in layer C. The number of cartridges reached by the respective L-fibres is distinctly greater in the nocturnal bee than in the worker honeybee and is larger than could be estimated from our previous Golgi-light microscopy study. The extreme dorso-ventrally oriented dendritic field of L4 in M. genalis may, in addition to its potential role in spatial summation, be involved in edge detection. Thus, we have shown that the amount of lateral spreading present in the lamina provides the anatomical basis for the required spatial summation. Theoretical and future physiological work should further elucidate the roles that this lateral spreading plays to improve dim-light vision in nocturnal insects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Photic niche invasions: phylogenetic history of the dim-light foraging augochlorine bees (Halictidae).

              Most bees rely on flowering plants and hence are diurnal foragers. From this ancestral state, dim-light foraging in bees requires significant adaptations to a new photic environment. We used DNA sequences to evaluate the phylogenetic history of the most diverse clade of Apoidea that is adapted to dim-light environments (Augochlorini: Megalopta, Megaloptidia and Megommation). The most speciose lineage, Megalopta, is distal to the remaining dim-light genera, and its closest diurnal relative (Xenochlora) is recovered as a lineage that has secondarily reverted to diurnal foraging. Tests for adaptive protein evolution indicate that long-wavelength opsin shows strong evidence of stabilizing selection, with no more than five codons (2%) under positive selection, depending on analytical procedure. In the branch leading to Megalopta, the amino acid of the single positively selected codon is conserved among ancestral Halictidae examined, and is homologous to codons known to influence molecular structure at the chromophore-binding pocket. Theoretically, such mutations can shift photopigment λ(max) sensitivity and enable visual transduction in alternate photic environments. Results are discussed in light of the available evidence on photopigment structure, morphological specialization and biogeographic distributions over geological time.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Journal
                rbent
                Revista Brasileira de Entomologia
                Rev. Bras. entomol.
                Sociedade Brasileira De Entomologia (São Paulo )
                1806-9665
                December 2012
                : 56
                : 4
                : 481-488
                Affiliations
                [1 ] Universidade Estadual Paulista Brazil
                [2 ] Universidade Federal do Paraná Brazil
                Article
                S0085-56262012000400013
                10.1590/S0085-56262012000400013
                7b64a89e-1fbf-4ba3-9200-88804445feb5

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=0085-5626&lng=en
                Categories
                ENTOMOLOGY

                Entomology
                Abundance,chemical baits,scent,seasonality,Abundância,iscas químicas,olfato,sazonalidade
                Entomology
                Abundance, chemical baits, scent, seasonality, Abundância, iscas químicas, olfato, sazonalidade

                Comments

                Comment on this article