264
views
0
recommends
+1 Recommend
1 collections
    32
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long Non-Coding RNAs as Surrogate Indicators for Chemical Stress Responses in Human-Induced Pluripotent Stem Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we focused on two biological products as ideal tools for toxicological assessment: long non-coding RNAs (lncRNAs) and human-induced pluripotent stem cells (hiPSCs). lncRNAs are an important class of pervasive non-protein-coding transcripts involved in the molecular mechanisms associated with responses to cellular stresses. hiPSCs possess the capabilities of self-renewal and differentiation into multiple cell types, and they are free of the ethical issues associated with human embryonic stem cells. Here, we identified six novel lncRNAs (CDKN2B-AS1, MIR22HG, GABPB1-AS1, FLJ33630, LINC00152, and LINC0541471_v2) that respond to model chemical stresses (cycloheximide, hydrogen peroxide, cadmium, or arsenic) in hiPSCs. Our results indicated that the lncRNAs responded to general and specific chemical stresses. Compared with typical mRNAs such as p53-related mRNAs, the lncRNAs highly and rapidly responded to chemical stresses. We propose that these lncRNAs have the potential to be surrogate indicators of chemical stress responses in hiPSCs.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Reprogramming of human somatic cells to pluripotency with defined factors.

          Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Generation of human induced pluripotent stem cells from dermal fibroblasts.

            The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ectopic expression of the defined transcription factors KLF4, OCT4, SOX2, and C-MYC. The resultant cell lines are morphologically indistinguishable from human embryonic stem cells (HESC) generated from the inner cell mass of a human preimplantation embryo. Consistent with these observations, human iPS cells share a nearly identical gene-expression profile with two established HESC lines. Importantly, DNA fingerprinting indicates that the human iPS cells were derived from the donor material and are not a result of contamination. Karyotypic analyses demonstrate that reprogramming of human cells by defined factors does not induce, or require, chromosomal abnormalities. Finally, we provide evidence that human iPS cells can be induced to differentiate along lineages representative of the three embryonic germ layers indicating the pluripotency of these cells. Our findings are an important step toward manipulating somatic human cells to generate an unlimited supply of patient-specific pluripotent stem cells. In the future, the use of defined factors to change cell fate may be the key to routine nuclear reprogramming of human somatic cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals

              Mammalian genomes produce huge numbers of noncoding RNAs (ncRNAs). However, the functions of most ncRNAs are unclear, and novel techniques that can distinguish functional ncRNAs are needed. Studies of mRNAs have revealed that the half-life of each mRNA is closely related to its physiological function, raising the possibility that the RNA stability of an ncRNA reflects its function. In this study, we first determined the half-lives of 11,052 mRNAs and 1418 ncRNAs in HeLa Tet-off (TO) cells by developing a novel genome-wide method, which we named 5′- br omo-uridine i mmunoprecipitation c hase–deep sequencing analysis (BRIC-seq). This method involved pulse-labeling endogenous RNAs with 5′-bromo-uridine and measuring the ongoing decrease in RNA levels over time using multifaceted deep sequencing. By analyzing the relationship between RNA half-lives and functional categories, we found that RNAs with a long half-life ( t 1/2 ≥ 4 h) contained a significant proportion of ncRNAs, as well as mRNAs involved in housekeeping functions, whereas RNAs with a short half-life ( t 1/2 < 4 h) included known regulatory ncRNAs and regulatory mRNAs. The stabilities of a significant set of short-lived ncRNAs are regulated by external stimuli, such as retinoic acid treatment. In particular, we identified and characterized several novel long ncRNAs involved in cell proliferation from the group of short-lived ncRNAs. We designated this novel class of ncRNAs with a short half-life as S hort- Li ved noncoding T ranscripts (SLiTs). We propose that the strategy of monitoring RNA half-life will provide a powerful tool for investigating hitherto functionally uncharacterized regulatory RNAs.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                29 August 2014
                : 9
                : 8
                : e106282
                Affiliations
                [1 ]Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1, Onogawa, Tsukuba, Ibaraki, Japan
                [2 ]Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
                University of Minnesota Medical School, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HT YO YI MT. Performed the experiments: HT YO. Analyzed the data: HT. Contributed to the writing of the manuscript: HT YO YI MT.

                Article
                PONE-D-14-17808
                10.1371/journal.pone.0106282
                4149554
                25171338
                78e8fcd4-dfcd-42c6-a78a-dcc65543868a
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 April 2014
                : 3 August 2014
                Page count
                Pages: 6
                Funding
                The authors have no funding or support to report.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Molecular Biology
                Toxicology
                Ecology and Environmental Sciences
                Bioindicators
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are included within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article