21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reappraisal of the morphology and phylogenetic relationships of the alligatoroid crocodylian Diplocynodon hantoniensis from the late Eocene of the United Kingdom

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diplocynodon is a genus of basal alligatoroid comprising nine species, which spanned the late Palaeocene to middle Miocene of Europe. Despite recent revisions of most Diplocynodon species, one of the earliest named and most complete, Diplocynodon hantoniensis, has not been re-described for over 150 years. This species is known from the remains of numerous individuals from the Priabonian (late Eocene) Headon Hill Formation, which crops out at Hordle (Hordwell) Cliff in Hampshire, United Kingdom. Here we re-describe and diagnose Diplocynodon hantoniensis, providing the first detailed description of postcranial anatomy in Diplocynodon, and indeed any basal alligatoroid. Diplocynodon hantoniensis is diagnosed by four autapomorphies, including retention of the ectopterygoid–pterygoid flexure through ontogeny and a unique anterior process of the ectopterygoid adjacent to the posteriormost maxillary alveoli. A critical review of previously referred remains from elsewhere in Europe and the USA restricts Diplocynodon hantoniensis to the late Eocene of the UK. Through comparisons with extant crocodylians, the well-preserved postcranial skeleton enables the interpretation of numerous muscle attachments in the forelimbs and hindlimbs, providing a potentially rich source of character data for future phylogenetic analyses. Based on a comparison of humeral morphology between a large sample of crocodylian species, we outline two new morphological characters in the humerus. We include D. hantoniensis in a phylogenetic analysis, including all putative Diplocynodon species (103 taxa scored for 187 characters). We use four different character-weighting schemes: equal weighting, implied weighting (k value = 8) and extended implied weighting with k-values of 4 and 8. In general, these weighted analyses produce congruent results with the equal-weights analysis, and increase the resolution within Diplocynodon. We recover a monophyletic Diplocynodon in three of the four analyses. However, the fourth analysis, with the strongest downweighting of homoplastic characters and missing data (extended implied weighting with k = 4), recovers the Palaeocene Diplocynodon remensis outside Diplocynodon. Our comprehensive revision of one of the most completely known Diplocynodon species facilitates comparisons in the genus, as well as between other basal alligatoroids, and forms the basis for comparing postcranial anatomy in other fossil crocodylians.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology

          One of the lasting controversies in phylogenetic inference is the degree to which specific evolutionary models should influence the choice of methods. Model-based approaches to phylogenetic inference (likelihood, Bayesian) are defended on the premise that without explicit statistical models there is no science, and parsimony is defended on the grounds that it provides the best rationalization of the data, while refraining from assigning specific probabilities to trees or character-state reconstructions. Authors who favour model-based approaches often focus on the statistical properties of the methods and models themselves, but this is of only limited use in deciding the best method for phylogenetic inference-such decision also requires considering the conditions of evolution that prevail in nature. Another approach is to compare the performance of parsimony and model-based methods in simulations, which traditionally have been used to defend the use of models of evolution for DNA sequences. Some recent papers, however, have promoted the use of model-based approaches to phylogenetic inference for discrete morphological data as well. These papers simulated data under models already known to be unfavourable to parsimony, and modelled morphological evolution as if it evolved just like DNA, with probabilities of change for all characters changing in concert along tree branches. The present paper discusses these issues, showing that under reasonable and less restrictive models of evolution for discrete characters, equally weighted parsimony performs as well or better than model-based methods, and that parsimony under implied weights clearly outperforms all other methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda)

            Diplodocidae are among the best known sauropod dinosaurs. Several species were described in the late 1800s or early 1900s from the Morrison Formation of North America. Since then, numerous additional specimens were recovered in the USA, Tanzania, Portugal, and Argentina, as well as possibly Spain, England, Georgia, Zimbabwe, and Asia. To date, the clade includes about 12 to 15 nominal species, some of them with questionable taxonomic status (e.g., ‘Diplodocus’ hayi or Dyslocosaurus polyonychius), and ranging in age from Late Jurassic to Early Cretaceous. However, intrageneric relationships of the iconic, multi-species genera Apatosaurus and Diplodocus are still poorly known. The way to resolve this issue is a specimen-based phylogenetic analysis, which has been previously implemented for Apatosaurus, but is here performed for the first time for the entire clade of Diplodocidae. The analysis includes 81 operational taxonomic units, 49 of which belong to Diplodocidae. The set of OTUs includes all name-bearing type specimens previously proposed to belong to Diplodocidae, alongside a set of relatively complete referred specimens, which increase the amount of anatomically overlapping material. Non-diplodocid outgroups were selected to test the affinities of potential diplodocid specimens that have subsequently been suggested to belong outside the clade. The specimens were scored for 477 morphological characters, representing one of the most extensive phylogenetic analyses of sauropod dinosaurs. Character states were figured and tables given in the case of numerical characters. The resulting cladogram recovers the classical arrangement of diplodocid relationships. Two numerical approaches were used to increase reproducibility in our taxonomic delimitation of species and genera. This resulted in the proposal that some species previously included in well-known genera like Apatosaurus and Diplodocus are generically distinct. Of particular note is that the famous genus Brontosaurus is considered valid by our quantitative approach. Furthermore, “Diplodocus” hayi represents a unique genus, which will herein be called Galeamopus gen. nov. On the other hand, these numerical approaches imply synonymization of “Dinheirosaurus” from the Late Jurassic of Portugal with the Morrison Formation genus Supersaurus. Our use of a specimen-, rather than species-based approach increases knowledge of intraspecific and intrageneric variation in diplodocids, and the study demonstrates how specimen-based phylogenetic analysis is a valuable tool in sauropod taxonomy, and potentially in paleontology and taxonomy as a whole.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Problematic character coding methods in morphology and their effects

                Bookmark

                Author and article information

                Journal
                Zoological Journal of the Linnean Society
                Oxford University Press (OUP)
                0024-4082
                1096-3642
                July 01 2019
                July 01 2019
                Affiliations
                [1 ]Department of Earth Science and Engineering, Imperial College London, London, UK
                [2 ]Department of Earth Sciences, University College London, London, UK
                [3 ]Division of Paleontology, American Museum of Natural History, New York, USA
                [4 ]Université Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 Laboratoire de Géologie de Lyon: Terre, Planète, Environnement, Lyon, France
                [5 ]Dipartimento di Scienze della Terra, Università di Torino, Torino, Italy
                [6 ]Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTAICP, Carrer de les Columnes s/n, Campus de la UAB, Barcelona, Spain
                Article
                10.1093/zoolinnean/zlz034
                78e037e3-5ca7-4ecd-a3f7-24cfcf6f31cd
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article