14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Total Body Irradiation (TBI) using Helical Tomotherapy in children and young adults undergoing stem cell transplantation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Establishing Total Body Irradiation (TBI) using Helical Tomotherapy (HT) to gain better control over dose distribution and homogeneity and to individually spare organs at risk. Because of their limited body length the technique seems especially eligible in juvenile patients.

          Patients and methods

          The cohort consisted of 10 patients, 6 female and 4 male, aged 4 - 22 y with acute lymphoblastic- (ALL) or acute myeloic leukemia (AML). All patients presented with high risk disease features. Body length in treatment position ranged from 110–180 cm. Two Gy single dose was applied BID to a total dose of 12 Gy. Dose volume constraint for the PTV was 95% dose coverage for 95% of the volume. The lungs were spared to a mean dose of [less than or equal to] 10 Gy. Patients were positioned in a vac-loc bag in supine position with a 3-point head mask.

          Results

          Average D95 to the PTV was 11.7 Gy corresponding to a mean coverage of the PTV of 97.5%. Dmean for the lungs was 9.14 Gy. Grade 3–4 side effects were not observed.

          Conclusions

          TBI using HT is feasible and well tolerated. A benefit could be demonstrated with regard to dose distribution and homogeneity and the selective dose-reduction to organs at risk.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted total marrow irradiation using three-dimensional image-guided tomographic intensity-modulated radiation therapy: an alternative to standard total body irradiation.

          Total body irradiation (TBI) is an important part of bone marrow transplantation conditioning regimens. In TBI, dose escalation is difficult, because of associated normal organ toxicities. A method to deliver a more targeted dose of TBI preferentially to sites of greatest tumor burden is needed to reduce the dose to normal organs, reduce toxicities, and permit dose escalation. The purpose of this study was to evaluate, through a dosimetric analysis, the potential advantages and feasibility of selectively delivering targeted myeloablative doses of radiation to bone and marrow using a recently developed image-guided tomographic intensity-modulated radiation therapy delivery system (helical tomotherapy). Whole-body computed tomography datasets from 3 patients, age 5, 20, and 53 years, were used for treatment planning studies to evaluate 2 targeted TBI strategies: total marrow irradiation (TMI), in which the target region was defined as the skeletal bone, and total marrow and lymphoid irradiation (TMLI), in which the target regions were defined as bone, major lymph node chains, liver, spleen, and sanctuary sites, such as brain. Organ doses and dose distributions were compared with those in conventional TBI. A 1.7- to 7.5-fold reduction in median organ doses was observed with TMI and TMLI compared with conventional TBI. With this more targeted approach, a dose-volume histogram analysis predicted the potential to escalate the dose to bone (and containing marrow) up to 20 Gy, while maintaining doses to normal organs at lower levels than in conventional TBI to 12 Gy. Results were similar for the adult and pediatric patients, indicating that this form of targeted TBI will be applicable to most patients regardless of frame size. TMI to 10 Gy was delivered as part of a tandem transplant regimen to the 53-year-old patient with multiple myeloma. Clinical results confirmed the treatment planning predictions. After TMI, the patient experienced the expected blood count nadir, followed by successful engraftment. Grade 2 nausea and grade 1 emesis occurred only briefly on day 2 of TMI. Skin erythema, oral mucositis, esophagitis, and enteritis were not observed. This report demonstrates the feasibility and potential dosimetric advantages of selectively delivering myeloablative doses of radiation to bone and marrow using an image-guided tomographic intensity-modulated radiation therapy delivery system. Organ doses are substantially lower than those associated with standard TBI and predict the potential to significantly reduce associated toxicities and allow for dose escalation. The results also suggest that this form of targeted TBI may have potential advantages over other forms of targeted TBI, such as radioimmunotherapy or bone-seeking radionuclide therapy. Ongoing clinical trials will define the maximum TMI and TMLI doses achievable and define the potential advantages and limitations of this new approach for patients undergoing hematopoietic stem cell transplantation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Image guidance for precise conformal radiotherapy.

            To review the state of the art in image-guided precision conformal radiotherapy and to describe how helical tomotherapy compares with the image-guided practices being developed for conventional radiotherapy. Image guidance is beginning to be the fundamental basis for radiotherapy planning, delivery, and verification. Radiotherapy planning requires more precision in the extension and localization of disease. When greater precision is not possible, conformal avoidance methodology may be indicated whereby the margin of disease extension is generous, except where sensitive normal tissues exist. Radiotherapy delivery requires better precision in the definition of treatment volume, on a daily basis if necessary. Helical tomotherapy has been designed to use CT imaging technology to plan, deliver, and verify that the delivery has been carried out as planned. The image-guided processes of helical tomotherapy that enable this goal are described. Examples of the results of helical tomotherapy processes for image-guided intensity-modulated radiotherapy are presented. These processes include megavoltage CT acquisition, automated segmentation of CT images, dose reconstruction using the CT image set, deformable registration of CT images, and reoptimization. Image-guided precision conformal radiotherapy can be used as a tool to treat the tumor yet spare critical structures. Helical tomotherapy has been designed from the ground up as an integrated image-guided intensity-modulated radiotherapy system and allows new verification processes based on megavoltage CT images to be implemented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Retrospective, monocentric analysis of late effects after Total Body Irradiation (TBI) in adults.

              Total body irradiation (TBI) is a standard treatment modality within the multidisciplinary approach for allogeneous stem cell or bone marrow transplantation. However, surviving patients are at risk for developing a variety of late sequelae. This analysis aimed to retrospectively characterize late effects after TBI in adults treated in a single center.
                Bookmark

                Author and article information

                Contributors
                Journal
                Radiat Oncol
                Radiat Oncol
                Radiation Oncology (London, England)
                BioMed Central
                1748-717X
                2013
                15 April 2013
                : 8
                : 92
                Affiliations
                [1 ]Department of Radiation Oncology, Charité – University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
                [2 ]Department of Pediatric Oncology, Charité – University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
                Article
                1748-717X-8-92
                10.1186/1748-717X-8-92
                3653702
                23587349
                76636e48-48ec-47d3-9412-c5c22b302d82
                Copyright ©2013 Gruen et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 August 2012
                : 7 April 2013
                Categories
                Research

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article