13
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cenozoic ice-rafting history of the central Arctic Ocean: Terrigenous sands on the Lomonosov Ridge : CENOZOIC IRD CENTRAL ARCTIC OCEAN

      Paleoceanography
      American Geophysical Union (AGU)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Trends, rhythms, and aberrations in global climate 65 Ma to present.

          Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cenozoic deep-Sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite

            A deep-sea temperature record for the past 50 million years has been produced from the magnesium/calcium ratio (Mg/Ca) in benthic foraminiferal calcite. The record is strikingly similar in form to the corresponding benthic oxygen isotope (delta(18)O) record and defines an overall cooling of about 12 degrees C in the deep oceans with four main cooling periods. Used in conjunction with the benthic delta(18)O record, the magnesium temperature record indicates that the first major accumulation of Antarctic ice occurred rapidly in the earliest Oligocene (34 million years ago) and was not accompanied by a decrease in deep-sea temperatures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The heartbeat of the Oligocene climate system.

              A 13-million-year continuous record of Oligocene climate from the equatorial Pacific reveals a pronounced "heartbeat" in the global carbon cycle and periodicity of glaciations. This heartbeat consists of 405,000-, 127,000-, and 96,000-year eccentricity cycles and 1.2-million-year obliquity cycles in periodically recurring glacial and carbon cycle events. That climate system response to intricate orbital variations suggests a fundamental interaction of the carbon cycle, solar forcing, and glacial events. Box modeling shows that the interaction of the carbon cycle and solar forcing modulates deep ocean acidity as well as the production and burial of global biomass. The pronounced 405,000-year eccentricity cycle is amplified by the long residence time of carbon in the oceans.
                Bookmark

                Author and article information

                Journal
                Paleoceanography
                Paleoceanography
                American Geophysical Union (AGU)
                08838305
                March 2008
                March 2008
                : 23
                : 1
                : n/a
                Article
                10.1029/2007PA001483
                75fe31ce-5b1a-4d32-8dd2-fe4088852930
                © 2008

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article