8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review of Coupled Hydrologic-Hydraulic Models for Floodplain Assessments in Africa: Opportunities and Challenges for Floodplain Wetland Management

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Floodplain wetlands are a fundamental part of the African continent’s ecosystem and serve as habitat for fish and wildlife species, biodiversity, and micro-organisms that support life. It is generally recognised that wetlands are and remain fragile ecosystems that should be subject to sustainable conservation and management through the use of sustainable tools. In this paper, we propose a synthesis of the state of art concerning coupled hydrologic and hydraulic models for floodplains assessments in Africa. Case studies reviewed in this paper have pointed out the potential of applying coupled hydrologic and hydraulic models and the opportunities present to be used in Africa especially for data scarce and large basin for floodplain assessments through the use of available open access models, coupling frameworks and remotely sensed datasets. To our knowledge this is the first case study review of this kind on this topic. A Hydrological model coupled with Hydraulic Model of the floodplain provides improvements in floodplain model simulations and hence better information for floodplain management. Consequently, this would lead to improved decision-making and planning of adaption and mitigation measures for sound floodplain wetland management plans and programmes especially with the advent of climate change and variability.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes

          The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to ‘smart’ interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Uncertainty in river discharge observations: a quantitative analysis

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Hydrology
                Hydrology
                MDPI AG
                2306-5338
                March 2021
                March 11 2021
                : 8
                : 1
                : 44
                Article
                10.3390/hydrology8010044
                7584b97b-b0db-45cc-9ff7-d9ff131ceba4
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article