32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Quantitative estimates of velocity sensitivity to surface melt variations at a large Greenland outlet glacier

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The flow speed of Greenland outlet glaciers is governed by several factors, the relative importance of which is poorly understood. The delivery of surface-generated meltwater to the bed of alpine glaciers has been shown to influence glacier flow speed when the volume of water is sufficient to increase basal fluid pressure and hence basal lubrication. While this effect has also been demonstrated on the Greenland ice-sheet margin, little is known about the influence of surface melting on the large, marine-terminating outlet glaciers that drain the ice sheet. We use a validated model of meltwater input and GPS-derived surface velocities to quantify the sensitivity of glacier flow speed to changes in surface melt at Helheim Glacier during two summer seasons (2007–08). Our observations span ∼55 days near the middle of each melt season. We find that relative changes in glacier speed due to meltwater input are small, with variations of ∼45% in melt producing changes in velocity of ∼2–4%. These velocity variations are, however, of similar absolute magnitude to those observed at smaller glaciers and on the ice-sheet margin. We find that the glacier’s sensitivity to variations in meltwater input decreases approximately exponentially with distance from the calving front. Sensitivity to melt varies with time, but generally increases as the melt season progresses. We interpret the time-varying sensitivity of glacier flow to meltwater input as resulting from changes in subglacial hydraulic routing caused by the changing volume of meltwater input.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Surface melt-induced acceleration of Greenland ice-sheet flow.

          Ice flow at a location in the equilibrium zone of the west-central Greenland Ice Sheet accelerates above the midwinter average rate during periods of summer melting. The near coincidence of the ice acceleration with the duration of surface melting, followed by deceleration after the melting ceases, indicates that glacial sliding is enhanced by rapid migration of surface meltwater to the ice-bedrock interface. Interannual variations in the ice acceleration are correlated with variations in the intensity of the surface melting, with larger increases accompanying higher amounts of summer melting. The indicated coupling between surface melting and ice-sheet flow provides a mechanism for rapid, large-scale, dynamic responses of ice sheets to climate warming.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ice-sheet acceleration driven by melt supply variability.

            Increased ice velocities in Greenland are contributing significantly to eustatic sea level rise. Faster ice flow has been associated with ice-ocean interactions in water-terminating outlet glaciers and with increased surface meltwater supply to the ice-sheet bed inland. Observed correlations between surface melt and ice acceleration have raised the possibility of a positive feedback in which surface melting and accelerated dynamic thinning reinforce one another, suggesting that overall warming could lead to accelerated mass loss. Here I show that it is not simply mean surface melt but an increase in water input variability that drives faster ice flow. Glacier sliding responds to melt indirectly through changes in basal water pressure, with observations showing that water under glaciers drains through channels at low pressure or through interconnected cavities at high pressure. Using a model that captures the dynamic switching between channel and cavity drainage modes, I show that channelization and glacier deceleration rather than acceleration occur above a critical rate of water flow. Higher rates of steady water supply can therefore suppress rather than enhance dynamic thinning, indicating that the melt/dynamic thinning feedback is not universally operational. Short-term increases in water input are, however, accommodated by the drainage system through temporary spikes in water pressure. It is these spikes that lead to ice acceleration, which is therefore driven by strong diurnal melt cycles and an increase in rain and surface lake drainage events rather than an increase in mean melt supply.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Glacier surge mechanism based on linked cavity configuration of the basal water conduit system

                Bookmark

                Author and article information

                Journal
                applab
                Journal of Glaciology
                J. Glaciol.
                Cambridge University Press (CUP)
                0022-1430
                1727-5652
                2011
                September 2017
                : 57
                : 204
                : 609-620
                Article
                10.3189/002214311797409785
                74d5037a-7827-40d1-a884-94d093c4fbab
                © 2011
                History

                Comments

                Comment on this article