Titanium- n-butoxide was hydrolyzed in the presence of benzoylacetone, and the resulting solution was concentrated and dried at 120 or 140 °C to obtain transparent amorphous materials. High-energy X-ray diffraction measurement was conducted at the SPring-8 facility, and the reduced pair distribution function, G( r) was calculated by Fourier transform of the total structure factor, S( Q). The G( r) value suggested that the materials are composed of TiO 6 octahedra linked by corner- and edge-sharing. Low temperature thermomechanical analysis (TMA) and differential scanning calorimetry (DSC) were conduced on the materials, where a deflection was detected both in the TMA and DSC curves, revealing the glass transition of the materials. Combined with the previous work based on infrared absorption spectroscopy and gel permeation chromatography, the materials are demonstrated to be a new class of glassy materials composed of linked metal-oxygen polyhedra chelated with organic molecules. The materials are innovative due to the high refractive indices that originate in the metal-oxo oligomers and to the shapability given by their thermoplastic properties.
Titanium- n-butoxide was hydrolyzed in the presence of benzoylacetone, and the resulting solution was concentrated and dried at 120 or 140 °C to obtain transparent amorphous materials.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.