4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantum computing: current and potential applications in digital agriculture Translated title: Computação quântica: aplicações atuais e potenciais na agricultura digital

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract Quantum computers use the properties of quantum physics to perform information storage and processing operations. The operation of these computers involves concepts such as entanglement and superposition, which endow them with a great processing power that even surpasses that of the most powerful current supercomputers, while consuming significantly lower amounts of energy. The different studies analyzed in this review article suggest that quantum computing will have a deep impact in areas such as finance, logistics, transportation, space and automotive technology, materials science, energy, pharmaceutical and healthcare industry, cybersecurity, and agriculture. In digital agriculture, several applications that could be executed more efficiently in quantum computers for data processing and understanding of biological processes were identified and exemplified. These applications are grouped here into the following four areas: bioinformatics, remote sensing, climate modeling, and smart farming. This article also explores the strategic importance of mastering quantum computing, highlights some advantages in relation to classical computing, and presents a mapping of the services already available, enabling institutions to undertake strategic planning for the incorporation of quantum computing into their development processes. Finally, the challenges for the implementation of quantum computing are highlighted, along with some ongoing initiatives aimed at furthering research at the forefront of knowledge in this area applied to digital agriculture.

          Translated abstract

          Resumo Os computadores quânticos usam as propriedades da física quântica para realizar operações de armazenamento e processamento de informações. A operação desses computadores envolve conceitos como emaranhamento e superposição, que os dotam de grande poder de processamento que supera até mesmo o dos mais poderosos supercomputadores atuais, consumindo quantidades significativamente menores de energia. Os diferentes estudos analisados neste artigo de revisão sugerem que a computação quântica terá impacto profundo em áreas como finanças, logística, transporte, tecnologia espacial e automotiva, ciência dos materiais, energia, indústria farmacêutica e de saúde, segurança cibernética e agricultura. Na agricultura digital, foram identificadas e exemplificadas várias aplicações que poderiam ser executadas de forma mais eficiente em computadores quânticos para processamento de dados e compreensão de processos biológicos. Essas aplicações são agrupadas aqui nas quatro seguintes áreas: bioinformática, sensoriamento remoto, modelagem climática e agricultura inteligente. Este artigo também explora a importância estratégica do domínio da computação quântica, destaca algumas vantagens em relação à computação clássica e apresenta um mapeamento dos serviços já disponíveis, o que permitirá que instituições empreendam um planejamento estratégico para incorporar a computação quântica em seus processos de desenvolvimento. Por fim, são destacados os desafios para a implementação da computação quântica, juntamente com algumas iniciativas em andamento que visam aprofundar a pesquisa na vanguarda do conhecimento nesta área aplicada à agricultura digital.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Quantum supremacy using a programmable superconducting processor

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Quantum Computing in the NISQ era and beyond

            Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away - we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets

              Quantum computers can be used to address electronic-structure problems and problems in materials science and condensed matter physics that can be formulated as interacting fermionic problems, problems which stretch the limits of existing high-performance computers. Finding exact solutions to such problems numerically has a computational cost that scales exponentially with the size of the system, and Monte Carlo methods are unsuitable owing to the fermionic sign problem. These limitations of classical computational methods have made solving even few-atom electronic-structure problems interesting for implementation using medium-sized quantum computers. Yet experimental implementations have so far been restricted to molecules involving only hydrogen and helium. Here we demonstrate the experimental optimization of Hamiltonian problems with up to six qubits and more than one hundred Pauli terms, determining the ground-state energy for molecules of increasing size, up to BeH2. We achieve this result by using a variational quantum eigenvalue solver (eigensolver) with efficiently prepared trial states that are tailored specifically to the interactions that are available in our quantum processor, combined with a compact encoding of fermionic Hamiltonians and a robust stochastic optimization routine. We demonstrate the flexibility of our approach by applying it to a problem of quantum magnetism, an antiferromagnetic Heisenberg model in an external magnetic field. In all cases, we find agreement between our experiments and numerical simulations using a model of the device with noise. Our results help to elucidate the requirements for scaling the method to larger systems and for bridging the gap between key problems in high-performance computing and their implementation on quantum hardware.
                Bookmark

                Author and article information

                Journal
                pab
                Pesquisa Agropecuária Brasileira
                Pesq. agropec. bras.
                Embrapa Secretaria de Pesquisa e Desenvolvimento; Pesquisa Agropecuária Brasileira (Brasília, DF, Brazil )
                0100-204X
                1678-3921
                2024
                : 59
                : e03753
                Affiliations
                [1] Campinas SP orgnameEmbrapa Agricultura Digital Brazil kleber.sampaio@ 123456embrapa.br
                Author information
                https://orcid.org/0000-0003-2607-4246
                https://orcid.org/0000-0001-7777-2445
                https://orcid.org/0000-0001-8567-1046
                https://orcid.org/0000-0002-3246-5318
                https://orcid.org/0000-0002-9003-9683
                https://orcid.org/0000-0002-5935-4896
                https://orcid.org/0000-0002-3527-6870
                https://orcid.org/0000-0001-7190-2931
                https://orcid.org/0000-0002-6862-3031
                Article
                S0100-204X2024000108300 S0100-204X(24)05900008300
                10.1590/s1678-3921.pab2024.v59.03753
                744d8902-d650-4cce-8825-2f8895415c0d

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 29 April 2024
                : 10 June 2024
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 65, Pages: 0
                Product

                SciELO Brazil


                desenvolvimento rural,cbiotech nology,ccomputer science,cgeotech nology,cprecision agriculture,crural development,agricultura 5.0,biotecnologia,ciência da computação,geotecnologia,agricultura de precisão,cagriculture 5.0

                Comments

                Comment on this article