32
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus

      research-article
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A pandemic of a novel Coronavirus emerged in December of 2019 (COVID-19), causing devastating public health impact across the world. In the absence of a safe and effective vaccine or antivirals, strategies for controlling and mitigating the burden of the pandemic are focused on non-pharmaceutical interventions, such as social-distancing, contact-tracing, quarantine, isolation, and the use of face-masks in public. We develop a new mathematical model for assessing the population-level impact of the aforementioned control and mitigation strategies. Rigorous analysis of the model shows that the disease-free equilibrium is locally-asymptotically stable if a certain epidemiological threshold, known as the reproduction number (denoted by c ), is less than unity. Simulations of the model, using data relevant to COVID-19 transmission dynamics in the US state of New York and the entire US, show that the pandemic burden will peak in mid and late April, respectively. The worst-case scenario projections for cumulative mortality (based on the baseline levels of anti-COVID non-pharmaceutical interventions considered in the study) decrease dramatically by 80% and 64%, respectively, if the strict social-distancing measures implemented are maintained until the end of May or June, 2020. The duration and timing of the relaxation or termination of the strict social-distancing measures are crucially-important in determining the future trajectory of the COVID-19 pandemic. This study shows that early termination of the strict social-distancing measures could trigger a devastating second wave with burden similar to those projected before the onset of the strict social-distancing measures were implemented. The use of efficacious face-masks (such as surgical masks, with estimated efficacy 70%) in public could lead to the elimination of the pandemic if at least 70% of the residents of New York state use such masks in public consistently (nationwide, a compliance of at least 80% will be required using such masks). The use of low efficacy masks, such as cloth masks (of estimated efficacy less than 30%), could also lead to significant reduction of COVID-19 burden ( albeit, they are not able to lead to elimination). Combining low efficacy masks with improved levels of the other anti-COVID-19 intervention strategies can lead to the elimination of the pandemic. This study emphasizes the important role social-distancing plays in curtailing the burden of COVID-19. Increases in the adherence level of social-distancing protocols result in dramatic reduction of the burden of the pandemic, and the timely implementation of social-distancing measures in numerous states of the US may have averted a catastrophic outcome with respect to the burden of COVID-19. Using face-masks in public (including the low efficacy cloth masks) is very useful in minimizing community transmission and burden of COVID-19, provided their coverage level is high. The masks coverage needed to eliminate COVID-19 decreases if the masks-based intervention is combined with the strict social-distancing strategy.

          Highlights

          • COVID-19 is controllable using basic non-pharmaceutical interventions.

          • Quarantine and contact-tracing have marginal impact in minimizing COVID-19 burden.

          • High use of face-masks in public could lead to COVID-19 elimination.

          • Combining face-masks and social-distancing is more effective in COVID-19 control.

          • Ending social-distancing early could trigger a devastating second COVID-19 wave.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

          Abstract Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemiologic characteristics of NCIP. Methods We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number. Results Among the first 425 patients with confirmed NCIP, the median age was 59 years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9). Conclusions On the basis of this information, there is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An interactive web-based dashboard to track COVID-19 in real time

            In December, 2019, a local outbreak of pneumonia of initially unknown cause was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel coronavirus, 1 namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak has since spread to every province of mainland China as well as 27 other countries and regions, with more than 70 000 confirmed cases as of Feb 17, 2020. 2 In response to this ongoing public health emergency, we developed an online interactive dashboard, hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases of coronavirus disease 2019 (COVID-19) in real time. The dashboard, first shared publicly on Jan 22, illustrates the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries. It was developed to provide researchers, public health authorities, and the general public with a user-friendly tool to track the outbreak as it unfolds. All data collected and displayed are made freely available, initially through Google Sheets and now through a GitHub repository, along with the feature layers of the dashboard, which are now included in the Esri Living Atlas. The dashboard reports cases at the province level in China; at the city level in the USA, Australia, and Canada; and at the country level otherwise. During Jan 22–31, all data collection and processing were done manually, and updates were typically done twice a day, morning and night (US Eastern Time). As the outbreak evolved, the manual reporting process became unsustainable; therefore, on Feb 1, we adopted a semi-automated living data stream strategy. Our primary data source is DXY, an online platform run by members of the Chinese medical community, which aggregates local media and government reports to provide cumulative totals of COVID-19 cases in near real time at the province level in China and at the country level otherwise. Every 15 min, the cumulative case counts are updated from DXY for all provinces in China and for other affected countries and regions. For countries and regions outside mainland China (including Hong Kong, Macau, and Taiwan), we found DXY cumulative case counts to frequently lag behind other sources; we therefore manually update these case numbers throughout the day when new cases are identified. To identify new cases, we monitor various Twitter feeds, online news services, and direct communication sent through the dashboard. Before manually updating the dashboard, we confirm the case numbers with regional and local health departments, including the respective centres for disease control and prevention (CDC) of China, Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government, and WHO, as well as city-level and state-level health authorities. For city-level case reports in the USA, Australia, and Canada, which we began reporting on Feb 1, we rely on the US CDC, the government of Canada, the Australian Government Department of Health, and various state or territory health authorities. All manual updates (for countries and regions outside mainland China) are coordinated by a team at Johns Hopkins University. The case data reported on the dashboard aligns with the daily Chinese CDC 3 and WHO situation reports 2 for within and outside of mainland China, respectively (figure ). Furthermore, the dashboard is particularly effective at capturing the timing of the first reported case of COVID-19 in new countries or regions (appendix). With the exception of Australia, Hong Kong, and Italy, the CSSE at Johns Hopkins University has reported newly infected countries ahead of WHO, with Hong Kong and Italy reported within hours of the corresponding WHO situation report. Figure Comparison of COVID-19 case reporting from different sources Daily cumulative case numbers (starting Jan 22, 2020) reported by the Johns Hopkins University Center for Systems Science and Engineering (CSSE), WHO situation reports, and the Chinese Center for Disease Control and Prevention (Chinese CDC) for within (A) and outside (B) mainland China. Given the popularity and impact of the dashboard to date, we plan to continue hosting and managing the tool throughout the entirety of the COVID-19 outbreak and to build out its capabilities to establish a standing tool to monitor and report on future outbreaks. We believe our efforts are crucial to help inform modelling efforts and control measures during the earliest stages of the outbreak.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              First Case of 2019 Novel Coronavirus in the United States

              Summary An outbreak of novel coronavirus (2019-nCoV) that began in Wuhan, China, has spread rapidly, with cases now confirmed in multiple countries. We report the first case of 2019-nCoV infection confirmed in the United States and describe the identification, diagnosis, clinical course, and management of the case, including the patient’s initial mild symptoms at presentation with progression to pneumonia on day 9 of illness. This case highlights the importance of close coordination between clinicians and public health authorities at the local, state, and federal levels, as well as the need for rapid dissemination of clinical information related to the care of patients with this emerging infection.
                Bookmark

                Author and article information

                Contributors
                Journal
                Math Biosci
                Math Biosci
                Mathematical Biosciences
                Elsevier Inc.
                0025-5564
                1879-3134
                1 May 2020
                July 2020
                1 May 2020
                : 325
                : 108364
                Affiliations
                [a ]Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
                [b ]School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287, USA
                [c ]Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
                [d ]Faculty of Medicine, The Kirby Institute, University of New South Wales, Sydney, Australia
                [e ]Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, USA
                Author notes
                [* ]Corresponding author. agumel@ 123456asu.edu
                [1]

                Other affiliation: College of Health Solutions & College of Public Affairs and Community Solutions, Arizona State University, Tempe, Arizona, 85287, USA.

                [2]

                Other affiliation: Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa.

                Article
                S0025-5564(20)30056-0 108364
                10.1016/j.mbs.2020.108364
                7252217
                32360770
                73d88545-f86a-47b5-a7ff-190a51dc6ef9
                © 2020 The Authors

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 15 April 2020
                : 23 April 2020
                : 23 April 2020
                Categories
                Article

                Quantitative & Systems biology
                mathematical model,covid-19,sars-cov-2,social-distancing,quarantine,isolation,contact-tracing,face-mask,non-pharmaceutical intervention

                Comments

                Comment on this article