42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessing Tuberculosis Case Fatality Ratio: A Meta-Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recently, the tuberculosis (TB) Task Force Impact Measurement acknowledged the need to review the assumptions underlying the TB mortality estimates published annually by the World Health Organization (WHO). TB mortality is indirectly measured by multiplying estimated TB incidence with estimated case fatality ratio (CFR). We conducted a meta-analysis to estimate the TB case fatality ratio in TB patients having initiated TB treatment.

          Methods

          We searched for eligible studies in the PubMed and Embase databases through March 4 th 2011 and by reference listing of relevant review articles. Main analyses included the estimation of the pooled percentages of: a) TB patients dying due to TB after having initiated TB treatment and b) TB patients dying during TB treatment. Pooled percentages were estimated using random effects regression models on the combined patient population from all studies.

          Main Results

          We identified 69 relevant studies of which 22 provided data on mortality due to TB and 59 provided data on mortality during TB treatment. Among HIV infected persons the pooled percentage of TB patients dying due to TB was 9.2% (95% Confidence Interval (CI): 3.7%–14.7%) and among HIV uninfected persons 3.0% (95% CI: −1.2%–7.4%) based on the results of eight and three studies respectively providing data for this analyses. The pooled percentage of TB patients dying during TB treatment was 18.8% (95% CI: 14.8%–22.8%) among HIV infected patients and 3.5% (95% CI: 2.0%–4.92%) among HIV uninfected patients based on the results of 27 and 19 studies respectively.

          Conclusion

          The results of the literature review are useful in generating prior distributions of CFR in countries with vital registration systems and have contributed towards revised estimates of TB mortality This literature review did not provide us with all data needed for a valid estimation of TB CFR in TB patients initiating TB treatment.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project.

          To estimate the risk and prevalence of Mycobacterium tuberculosis (MTB) infection and tuberculosis (TB) incidence, prevalence, and mortality, including disease attributable to human immunodeficiency virus (HIV), for 212 countries in 1997. A panel of 86 TB experts and epidemiologists from more than 40 countries was chosen by the World Health Organization (WHO), with final agreement being reached between country experts and WHO staff. Incidence of TB and mortality in each country was determined by (1) case notification to the WHO, (2) annual risk of infection data from tuberculin surveys, and (3) data on prevalence of smear-positive pulmonary disease from prevalence surveys. Estimates derived from relatively poor data were strongly influenced by panel member opinion. Objective estimates were derived from high-quality data collected recently by approved procedures. Agreement was reached by (1) participants reviewing methods and data and making provisional estimates in closed workshops held at WHO's 6 regional offices, (2) principal authors refining estimates using standard methods and all available data, and (3) country experts reviewing and adjusting these estimates and reaching final agreement with WHO staff. In 1997, new cases of TB totaled an estimated 7.96 million (range, 6.3 million-11.1 million), including 3.52 million (2.8 million-4.9 million) cases (44%) of infectious pulmonary disease (smear-positive), and there were 16.2 million (12.1 million-22.5 million) existing cases of disease. An estimated 1.87 million (1.4 million-2.8 million) people died of TB and the global case fatality rate was 23% but exceeded 50% in some African countries with high HIV rates. Global prevalence of MTB infection was 32% (1.86 billion people). Eighty percent of all incident TB cases were found in 22 countries, with more than half the cases occurring in 5 Southeast Asian countries. Nine of 10 countries with the highest incidence rates per capita were in Africa. Prevalence of MTB/HIV coinfection worldwide was 0.18% and 640000 incident TB cases (8%) had HIV infection. The global burden of tuberculosis remains enormous, mainly because of poor control in Southeast Asia, sub-Saharan Africa, and eastern Europe, and because of high rates of M tuberculosis and HIV coinfection in some African countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Language bias in randomised controlled trials published in English and German.

            Some randomised controlled trials (RCTs) done in German-speaking Europe are published in international English-language journals and others in national German-language journals. We assessed whether authors are more likely to report trials with statistically significant results in English than in German. We studied pairs of RCT reports, matched for first author and time of publication, with one report published in German and the other in English. Pairs were identified from reports round in a manual search of five leading German-language journals and from reports published by the same authors in English found on Medline. Quality of methods and reporting were assessed with two different scales by two investigators who were unaware of authors' identities, affiliations, and other characteristics of trial reports. Main study endpoints were selected by two investigators who were unaware of trial results. Our main outcome was the number of pairs of studies in which the levels of significance (shown by p values) were discordant. 62 eligible pairs of reports were identified but 19 (31%) were excluded because they were duplicate publications. A further three pairs (5%) were excluded because no p values were given. The remaining 40 pairs were analysed. Design characteristics and quality features were similar for reports in both languages. Only 35% of German-language articles, compared with 62% of English-language articles, reported significant (p < 0.05) differences in the main endpoint between study and control groups (p = 0.002 by McNemar's test). Logistic regression showed that the only characteristic that predicted publication in an English-language journal was a significant result. The odds ratio for publication of trials with significant results in English was 3.75 (95% CI 1.25-11.3). Authors were more likely to publish RCTs in an English-language journal if the results were statistically significant. English language bias may, therefore, be introduced in reviews and meta-analyses if they include only trials reported in English. The effort of the Cochrane Collaboration to identify as many controlled trials as possible, through the manual search of many medical journals published in different languages will help to reduce such bias.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk factors for multidrug resistant tuberculosis in Europe: a systematic review.

              The resurgence of tuberculosis (TB) in western countries has been attributed to the HIV epidemic, immigration, and drug resistance. Multidrug resistant tuberculosis (MDR-TB) is caused by the transmission of multidrug resistant Mycobacterium tuberculosis strains in new cases, or by the selection of single drug resistant strains induced by previous treatment. The aim of this report is to determine risk factors for MDR-TB in Europe. A systematic review was conducted of published reports of risk factors associated with MDR-TB in Europe. Meta-analysis, meta-regression, and sub-grouping were used to pool risk estimates of MDR-TB and to analyse associations with age, sex, immigrant status, HIV status, occurrence year, study design, and area of Europe. Twenty nine papers were eligible for the review from 123 identified in the search. The pooled risk of MDR-TB was 10.23 times higher in previously treated than in never treated cases, with wide heterogeneity between studies. Study design and geographical area were associated with MDR-TB risk estimates in previously treated patients; the risk estimates were higher in cohort studies carried out in western Europe (RR 12.63; 95% CI 8.20 to 19.45) than in eastern Europe (RR 8.53; 95% CI 6.57 to 11.06). National estimates were possible for six countries. MDR-TB cases were more likely to be foreign born (odds ratio (OR) 2.46; 95% CI 1.86 to 3.24), younger than 65 years (OR 2.53; 95% CI 1.74 to 4.83), male (OR 1.38; 95% CI 1.16 to 1.65), and HIV positive (OR 3.52; 95% CI 2.48 to 5.01). Previous treatment was the strongest determinant of MDR-TB in Europe. Detailed study of the reasons for inadequate treatment could improve control strategies. The risk of MDR-TB in foreign born people needs to be re-evaluated, taking into account any previous treatment.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                27 June 2011
                : 6
                : 6
                : e20755
                Affiliations
                [1 ]Unit Knowledge, Research and Policy, KNCV Tuberculosis Foundation, The Hague, The Netherlands
                [2 ]Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
                [3 ]Stop TB Department, World Health Organization, Geneva, Switzerland
                McGill University, Canada
                Author notes

                Conceived and designed the experiments: MS ALB MvdW. Performed the experiments: MS MvdW. Analyzed the data: MS PG CS. Contributed reagents/materials/analysis tools: MS PG CS. Wrote the paper: MS PG ALB CS MvdW.

                [¤]

                Current address: KIT Biomedical Research, Royal Tropical Institute, Amsterdam, The Netherlands

                Article
                PONE-D-11-01578
                10.1371/journal.pone.0020755
                3124477
                21738585
                72e71ce9-69d7-4319-bca8-143a13d78890
                Straetemans et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 January 2011
                : 9 May 2011
                Page count
                Pages: 1
                Categories
                Research Article
                Biology
                Population Biology
                Population Metrics
                Death Rate
                Medicine
                Clinical Research Design
                Meta-Analyses
                Epidemiology
                Infectious Disease Epidemiology
                Global Health
                Infectious Diseases
                Bacterial Diseases
                Tuberculosis
                Tropical Diseases (Non-Neglected)
                Tuberculosis
                Non-Clinical Medicine
                Health Care Policy
                Health Risk Analysis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_

                Similar content229

                Cited by34

                Most referenced authors1,193