455
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          An improved broadband decoupling sequence for liquid crystals and solids.

          Recently we developed an efficient broadband decoupling sequence called SPARC-16 for liquid crystals ¿J. Magn. Reson. 130, 317 (1998). The sequence is based upon a 16-step phase cycling of the 2-step TPPM decoupling method for solids ¿J. Chem. Phys. 103, 6951 (1995). Since then, we have found that a stepwise variation of the phase angle in the TPPM sequence offers even better results. The application of this new method to a liquid crystalline compound, 4-n-pentyl-4'-cyanobiphenyl, and a solid, L-tyrosine hydrochloride, is reported. The reason for the improvement is explained by an analysis of the problem in the rotating frame. Copyright 2000 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties.

            Nuclear pore complexes permit rapid passage of cargoes bound to nuclear transport receptors, but otherwise suppress nucleocytoplasmic fluxes of inert macromolecules >/=30 kilodaltons. To explain this selectivity, a sieve structure of the permeability barrier has been proposed that is created through reversible cross-linking between Phe and Gly (FG)-rich nucleoporin repeats. According to this model, nuclear transport receptors overcome the size limit of the sieve and catalyze their own nuclear pore-passage by a competitive disruption of adjacent inter-repeat contacts, which transiently opens adjoining meshes. Here, we found that phenylalanine-mediated inter-repeat interactions indeed cross-link FG-repeat domains into elastic and reversible hydrogels. Furthermore, we obtained evidence that such hydrogel formation is required for viability in yeast.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex.

              Nuclear pore complexes (NPCs) form aqueous conduits in the nuclear envelope and gate the diffusion of large proteins between the cytoplasm and nucleoplasm. NPC proteins (nucleoporins) that contain phenylalanine-glycine motifs in filamentous, natively unfolded domains (FG domains) line the diffusion conduit of the NPC, but their role in the size-selective barrier is unclear. We show that deletion of individual FG domains in yeast relaxes the NPC permeability barrier. At the molecular level, the FG domains of five nucleoporins anchored at the NPC center form a cohesive meshwork of filaments through hydrophobic interactions, which involve phenylalanines in FG motifs and are dispersed by aliphatic alcohols. In contrast, the FG domains of four peripherally anchored nucleoporins are generally noncohesive. The results support a two-gate model of NPC architecture featuring a central diffusion gate formed by a meshwork of cohesive FG nucleoporin filaments and a peripheral gate formed by repulsive FG nucleoporin filaments.
                Bookmark

                Author and article information

                Journal
                EMBO J
                EMBO J
                The EMBO Journal
                Nature Publishing Group
                0261-4189
                1460-2075
                23 January 2013
                30 November 2012
                30 November 2012
                : 32
                : 2
                : 204-218
                Affiliations
                [1 ]Abteilung Zelluläre Logistik, Max-Planck-Institut für biophysikalische Chemie , Göttingen, Germany
                [2 ]Bijvoet Center for Biomolecular Research, Utrecht University , Utrecht, The Netherlands
                [3 ]Bioanalytische Massenspektrometrie, Max-Planck-Institut für biophysikalische Chemie , Göttingen, Germany
                [4 ]Bioanalytik, Abteilung Klinische Chemie Universitätsmedizin Göttingen , Göttingen, Germany
                Author notes
                [a ]Abteilung Zelluläre Logistik, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11 , Göttingen 37077, Germany. Tel.:+49 551 201 2401; Fax:+49 551 201 2407; E-mail: goerlich@ 123456mpibpc.mpg.de
                Article
                emboj2012302
                10.1038/emboj.2012.302
                3553378
                23202855
                72d7fe92-4119-43c6-b039-c8614d3d71b6
                Copyright © 2013, European Molecular Biology Organization

                This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission.

                History
                : 14 September 2012
                : 29 October 2012
                Categories
                Article

                Molecular biology
                exportin,fg hydrogel,importin,nuclear pore complex,o-glycosylation
                Molecular biology
                exportin, fg hydrogel, importin, nuclear pore complex, o-glycosylation

                Comments

                Comment on this article