22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Uniform carbon fibers evolved from bamboo chopsticks garbage are achieved by a facile hydrothermal method, exhibiting competitive electrochemical behavior with commercial graphite, or pretty high anodic performance after being optimized.

          Abstract

          Future development of mini consumer electronics or large electric vehicles/power grids requires Li-ion batteries (LIBs) with not only an outstanding energy-storage performance but also a minimum cost, and the foremost sustainability. Herein, we put forward a smart strategy to convert used disposable bamboo chopsticks into uniform carbon fibers for anodes of LIBs. Bamboo chopsticks waste is recycled and simply treated by a controllable hydrothermal process performed in alkaline solutions, wherein abundant natural cellulose fibers in bamboo in situ get separated and dispersed spontaneously. After carbonization, the evolved carbon fibers exhibit superior anodic performance to the bulky bamboo carbons counterpart, and competitive electrochemical behavior and cost with commercial graphite. The performance of carbon fibers can be further upgraded by growing nanostructured metal oxides (like MnO 2) firmly on each fiber scaffold to form a synergetic core–shell electrode architecture. A high reversible capacity of ∼710 mA h g −1 is maintained without decay up to 300 cycles. Our strategy presents a scalable route to transform chopsticks waste into carbon fibers, offering a very promising way to make sustainable anodes for LIBs and economical multi-functional carbon-based hybrids available for other practical applications.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Battery materials for ultrafast charging and discharging.

          The storage of electrical energy at high charge and discharge rate is an important technology in today's society, and can enable hybrid and plug-in hybrid electric vehicles and provide back-up for wind and solar energy. It is typically believed that in electrochemical systems very high power rates can only be achieved with supercapacitors, which trade high power for low energy density as they only store energy by surface adsorption reactions of charged species on an electrode material. Here we show that batteries which obtain high energy density by storing charge in the bulk of a material can also achieve ultrahigh discharge rates, comparable to those of supercapacitors. We realize this in LiFePO(4) (ref. 6), a material with high lithium bulk mobility, by creating a fast ion-conducting surface phase through controlled off-stoichiometry. A rate capability equivalent to full battery discharge in 10-20 s can be achieved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New opportunities for an ancient material.

            Spiders and silkworms generate silk protein fibers that embody strength and beauty. Orb webs are fascinating feats of bioengineering in nature, displaying magnificent architectures while providing essential survival utility for spiders. The unusual combination of high strength and extensibility is a characteristic unavailable to date in synthetic materials yet is attained in nature with a relatively simple protein processed from water. This biological template suggests new directions to emulate in the pursuit of new high-performance, multifunctional materials generated with a green chemistry and processing approach. These bio-inspired and high-technology materials can lead to multifunctional material platforms that integrate with living systems for medical materials and a host of other applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles.

                Bookmark

                Author and article information

                Journal
                EESNBY
                Energy Environ. Sci.
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2014
                2014
                : 7
                : 8
                : 2670-2679
                Article
                10.1039/C4EE00602J
                729cd53e-86ad-4699-b05a-7ff2b5fef71f
                © 2014
                History

                Comments

                Comment on this article