8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deep learning (DL) is a branch of machine learning and artificial intelligence that has been applied to many areas in different domains such as health care and drug design. Cancer prognosis estimates the ultimate fate of a cancer subject and provides survival estimation of the subjects. An accurate and timely diagnostic and prognostic decision will greatly benefit cancer subjects. DL has emerged as a technology of choice due to the availability of high computational resources. The main components in a standard computer-aided design (CAD) system are preprocessing, feature recognition, extraction and selection, categorization, and performance assessment. Reduction of costs associated with sequencing systems offers a myriad of opportunities for building precise models for cancer diagnosis and prognosis prediction. In this survey, we provided a summary of current works where DL has helped to determine the best models for the cancer diagnosis and prognosis prediction tasks. DL is a generic model requiring minimal data manipulations and achieves better results while working with enormous volumes of data. Aims are to scrutinize the influence of DL systems using histopathology images, present a summary of state-of-the-art DL methods, and give directions to future researchers to refine the existing methods.

          Related collections

          Most cited references174

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long Short-Term Memory

            Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

              State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Math Methods Med
                Comput Math Methods Med
                cmmm
                Computational and Mathematical Methods in Medicine
                Hindawi
                1748-670X
                1748-6718
                2021
                31 October 2021
                : 2021
                : 9025470
                Affiliations
                1School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
                2Department of Electrical and Computer Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan
                3Gofa Camp, Near Gofa Industrial College and German Adebabay, Nifas Silk-Lafto, 26649 Addis Ababa, Ethiopia
                4Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
                5Department of Applied Mathematics and Statistics, Technological University of Cartagena, Cartagena 30203, Spain
                6School of Control Science and Control Engineering, Harbin Institute of Technology, Harbin 150001, China
                7College of Internet of Things (IoT) Engineering, Hohai University (HHU), Changzhou Campus, 213022, China
                Author notes

                Academic Editor: Iman Yi Liao

                Author information
                https://orcid.org/0000-0002-9535-5167
                https://orcid.org/0000-0003-2260-0341
                https://orcid.org/0000-0002-5879-569X
                https://orcid.org/0000-0002-0928-915X
                Article
                10.1155/2021/9025470
                8572604
                34754327
                724f846c-da3d-4aa3-bdf8-a015dc2266ca
                Copyright © 2021 Ahsan Bin Tufail et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 August 2021
                : 30 September 2021
                : 5 October 2021
                Categories
                Review Article

                Applied mathematics
                Applied mathematics

                Comments

                Comment on this article