20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radiochromic film has become an important tool to verify dose distributions in highly conformal radiation therapy such as IMRT. Recently, a new generation of these films, EBT3, has become available. EBT3 has the same composition and thickness of the sensitive layer of the previous EBT2 films, but its symmetric layer configuration allows the user to eliminate side orientation dependence, which is reported for EBT2 films. The most important EBT3 characteristics have been investigated, such as response at high‐dose levels, sensitivity to scanner orientation and postirradiation coloration, energy and dose rate dependence, and orientation dependence with respect to film side. Additionally, different IMRT fields were measured with both EBT3 and EBT2 films and evaluated using gamma index analysis. The results obtained show that most of the characteristics of EBT3 film are similar to the EBT2 film, but the orientation dependence with respect to film side is completely eliminated in EBT3 films. The study confirms that EBT3 film can be used for clinical practice in the same way as the previous EBT2 film.

          PACS number: 87.56.Fc

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          A technique for the quantitative evaluation of dose distributions.

          The commissioning of a three-dimensional treatment planning system requires comparisons of measured and calculated dose distributions. Techniques have been developed to facilitate quantitative comparisons, including superimposed isodoses, dose-difference, and distance-to-agreement (DTA) distributions. The criterion for acceptable calculation performance is generally defined as a tolerance of the dose and DTA in regions of low and high dose gradients, respectively. The dose difference and DTA distributions complement each other in their useful regions. A composite distribution has recently been developed that presents the dose difference in regions that fail both dose-difference and DTA comparison criteria. Although the composite distribution identifies locations where the calculation fails the preselected criteria, no numerical quality measure is provided for display or analysis. A technique is developed to unify dose distribution comparisons using the acceptance criteria. The measure of acceptability is the multidimensional distance between the measurement and calculation points in both the dose and the physical distance, scaled as a fraction of the acceptance criteria. In a space composed of dose and spatial coordinates, the acceptance criteria form an ellipsoid surface, the major axis scales of which are determined by individual acceptance criteria and the center of which is located at the measurement point in question. When the calculated dose distribution surface passes through the ellipsoid, the calculation passes the acceptance test for the measurement point. The minimum radial distance between the measurement point and the calculation points (expressed as a surface in the dose-distance space) is termed the gamma index. Regions where gamma > 1 correspond to locations where the calculation does not meet the acceptance criteria. The determination of gamma throughout the measured dose distribution provides a presentation that quantitatively indicates the calculation accuracy. Examples of a 6 MV beam penumbra are used to illustrate the gamma index.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Precise radiochromic film dosimetry using a flat-bed document scanner.

            In this study, a measurement protocol is presented that improves the precision of dose measurements using a flat-bed document scanner in conjunction with two new GafChromic film models, HS and Prototype A EBT exposed to 6 MV photon beams. We established two sources of uncertainties in dose measurements, governed by measurement and calibration curve fit parameters contributions. We have quantitatively assessed the influence of different steps in the protocol on the overall dose measurement uncertainty. Applying the protocol described in this paper on the Agfa Arcus II flat-bed document scanner, the overall one-sigma dose measurement uncertainty for an uniform field amounts to 2% or less for doses above around 0.4 Gy in the case of the EBT (Prototype A), and for doses above 5 Gy in the case of the HS model GafChromic film using a region of interest 2 X 2 mm2 in size.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of Gafchromic EBT2 and EBT3 films for clinical photon and proton beams.

              Dose verification in highly conformal radiation therapy such as IMRT or proton therapy can benefit from the high spatial resolution offered by radio-chromic films such as Gafchromic EBT or EBT2. Recently, a new generation of these films, EBT3, has become available. The composition and thickness of the sensitive layer are the same as for the previous EBT2 films. The most important change is the symmetric layer configuration to eliminate side orientation dependence, which is reported for EBT2 films. The general film characteristics such as sensitivity to read-out orientation and postexposure darkening evolution of the new EBT3 film are evaluated. Film response has been investigated in clinical photon and proton beams and compared to former EBT2 films. Quenching effects in the proton Bragg peak region have been studied for both, EBT2 and EBT3 films. The general performance of EBT3 is comparable to EBT2, and the orientation dependence with respect to film side is completely eliminated in EBT3 films. Response differences of EBT2 and EBT3 films are of the same order of magnitude as batch-to-batch variations observed for EBT2 films. No significant difference has been found for both generations of EBT films between photon and proton exposure. Depth dose measurements of EBT2 and EBT3 show an excellent agreement, though underestimating dose by up to 20% in the Bragg peak region. The symmetric configuration of EBT3 presents a major improvement for film handling. EBT3 has similar dosimetric performance as its precursor EBT2 and can, thus, be applied to dose verification in IMRT in the same way. For dose verification in proton therapy the underresponse in the Bragg peak region has to be taken into account.
                Bookmark

                Author and article information

                Contributors
                mpasquino@aslto4.piemonte.it
                Journal
                J Appl Clin Med Phys
                J Appl Clin Med Phys
                10.1002/(ISSN)1526-9914
                ACM2
                Journal of Applied Clinical Medical Physics
                John Wiley and Sons Inc. (Hoboken )
                1526-9914
                04 March 2013
                March 2013
                : 14
                : 2 ( doiID: 10.1002/acm2.2013.14.issue-2 )
                : 158-171
                Affiliations
                [ 1 ] Azienda Sanitaria Locale TO 4 S.C. Fisica Sanitaria Ivrea (TO) Italy
                Author notes
                [*] [* ]Corresponding author: Massimo Pasquino, Azienda Sanitaria Locale TO 4, S.C. Fisica Sanitaria, Via Di Vittorio 1, 10015 Ivrea (TO), Italy; phone: 123‐456‐7890; fax: 012‐345‐6789; email: mpasquino@ 123456aslto4.piemonte.it
                Article
                ACM20158
                10.1120/jacmp.v14i2.4111
                5714357
                23470940
                720a982d-3285-4d20-9a35-58596f63636d
                © 2013 The Authors.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 02 October 2012
                : 02 December 2012
                Page count
                Figures: 9, Tables: 1, References: 24, Pages: 14, Words: 4340
                Categories
                Radiation Oncology Physics
                Radiation Oncology Physics
                Custom metadata
                2.0
                acm20158
                March 2013
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.5 mode:remove_FC converted:16.11.2017

                gafchromic ebt3,radiochromic film dosimetry,imrt verification

                Comments

                Comment on this article