22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum protein changes in a rat model of chronic pain show a correlation between animal and humans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In previous works we showed the overexpression of some proteins in biological fluids from patients suffering chronic pain. In this proteomic study we analysed serum from a rat model of neuropathic pain obtained by the chronic constriction injury (CCI) of sciatic nerve, at two time intervals, 2 and 5 weeks after the insult, to find proteins involved in the expression or mediation of pain. Sham-operated and CCI rats were treated with saline or indomethacin. Two weeks after ligation, we identified three serum proteins overexpressed in CCI rats, two of which, alpha-1-macroglobulin and vitamin D-binding protein (VDBP), remained increased 5 weeks post-surgery; at this time interval, we found increased levels of further proteins, namely apolipoprotein A-I (APOA1), apolipoprotein E (APOE), prostaglandin-H2 D-isomerase (PTGDS) and transthyretin (TTR), that overlap the overexpressed proteins found in humans. Indomethacin treatment reversed the effects of ligation. The qPCR analysis showed that transcript levels of APOA1, APOE, PTGDS and VDBP were overexpressed in the lumbar spinal cord (origin of sciatic nerve), but not in the striatum (an unrelated brain region), of CCI rats treated with saline 5 weeks after surgery, demonstrating that the lumbar spinal cord is a possible source of these proteins.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man

          A peripheral mononeuropathy was produced in adult rats by placing loosely constrictive ligatures around the common sciatic nerve. The postoperative behavior of these rats indicated that hyperalgesia, allodynia and, possibly, spontaneous pain (or dysesthesia) were produced. Hyperalgesic responses to noxious radiant heat were evident on the second postoperative day and lasted for over 2 months. Hyperalgesic responses to chemogenic pain were also present. The presence of allodynia was inferred from the nocifensive responses evoked by standing on an innocuous, chilled metal floor or by innocuous mechanical stimulation, and by the rats' persistence in holding the hind paw in a guarded position. The presence of spontaneous pain was suggested by a suppression of appetite and by the frequent occurrence of apparently spontaneous nocifensive responses. The affected hind paw was abnormally warm or cool in about one-third of the rats. About one-half of the rats developed grossly overgrown claws on the affected side. Experiments with this animal model may advance our understanding of the neural mechanisms of neuropathic pain disorders in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man.

            A peripheral mononeuropathy was produced in adult rats by placing loosely constrictive ligatures around the common sciatic nerve. The postoperative behavior of these rats indicated that hyperalgesia, allodynia and, possibly, spontaneous pain (or dysesthesia) were produced. Hyperalgesic responses to noxious radiant heat were evident on the second postoperative day and lasted for over 2 months. Hyperalgesic responses to chemogenic pain were also present. The presence of allodynia was inferred from the nocifensive responses evoked by standing on an innocuous, chilled metal floor or by innocuous mechanical stimulation, and by the rats' persistence in holding the hind paw in a guarded position. The presence of spontaneous pain was suggested by a suppression of appetite and by the frequent occurrence of apparently spontaneous nocifensive responses. The affected hind paw was abnormally warm or cool in about one-third of the rats. About one-half of the rats developed grossly overgrown claws on the affected side. Experiments with this animal model may advance our understanding of the neural mechanisms of neuropathic pain disorders in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disease proteomics.

              Sam Hanash (2003)
              The sequencing of the human genome and that of numerous pathogens has opened the door for proteomics by providing a sequence-based framework for mining proteomes. As a result, there is intense interest in applying proteomics to foster a better understanding of disease processes, develop new biomarkers for diagnosis and early detection of disease, and accelerate drug development. This interest creates numerous opportunities as well as challenges to meet the needs for high sensitivity and high throughput required for disease-related investigations.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                01 February 2017
                2017
                : 7
                : 41723
                Affiliations
                [1 ]Department of Diagnostic and Clinical Medicine and Public Health, Proteomic Lab, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia , via del Pozzo 71, 41124, Modena, Italy
                [2 ]Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia , via Campi 287, 41125, Modena, Italy
                [3 ]Science and Technology Park for Medicine , Mirandola, Modena, Italy
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep41723
                10.1038/srep41723
                5286399
                28145509
                719b29b0-9bf2-40e4-950a-bcf41c8ed1bf
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 30 August 2016
                : 03 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article