91
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Evolution of protein kinase signaling from yeast to man

      , , ,
      Trends in Biochemical Sciences
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein phosphorylation controls many cellular processes, especially those involved in intercellular communication and coordination of complex functions. To explore the evolution of protein phosphorylation, we compared the protein kinase complements ('kinomes') of budding yeast, worm and fly, with known human kinases. We classify kinases into putative orthologous groups with conserved functions and discuss kinase families and pathways that are unique, expanded or lost in each lineage. Fly and human share several kinase families involved in immunity, neurobiology, cell cycle and morphogenesis that are absent from worm, suggesting that these functions might have evolved after the divergence of nematodes from the main metazoan lineage.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Book: not found

          The operated Markov´s chains in economy (discrete chains of Markov with the income)

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Automatic clustering of orthologs and in-paralogs from pairwise species comparisons.

            Orthologs are genes in different species that originate from a single gene in the last common ancestor of these species. Such genes have often retained identical biological roles in the present-day organisms. It is hence important to identify orthologs for transferring functional information between genes in different organisms with a high degree of reliability. For example, orthologs of human proteins are often functionally characterized in model organisms. Unfortunately, orthology analysis between human and e.g. invertebrates is often complex because of large numbers of paralogs within protein families. Paralogs that predate the species split, which we call out-paralogs, can easily be confused with true orthologs. Paralogs that arose after the species split, which we call in-paralogs, however, are bona fide orthologs by definition. Orthologs and in-paralogs are typically detected with phylogenetic methods, but these are slow and difficult to automate. Automatic clustering methods based on two-way best genome-wide matches on the other hand, have so far not separated in-paralogs from out-paralogs effectively. We present a fully automatic method for finding orthologs and in-paralogs from two species. Ortholog clusters are seeded with a two-way best pairwise match, after which an algorithm for adding in-paralogs is applied. The method bypasses multiple alignments and phylogenetic trees, which can be slow and error-prone steps in classical ortholog detection. Still, it robustly detects complex orthologous relationships and assigns confidence values for both orthologs and in-paralogs. The program, called INPARANOID, was tested on all completely sequenced eukaryotic genomes. To assess the quality of INPARANOID results, ortholog clusters were generated from a dataset of worm and mammalian transmembrane proteins, and were compared to clusters derived by manual tree-based ortholog detection methods. This study led to the identification with a high degree of confidence of over a dozen novel worm-mammalian ortholog assignments that were previously undetected because of shortcomings of phylogenetic methods.A WWW server that allows searching for orthologs between human and several fully sequenced genomes is installed at http://www.cgb.ki.se/inparanoid/. This is the first comprehensive resource with orthologs of all fully sequenced eukaryotic genomes. Programs and tables of orthology assignments are available from the same location. Copyright 2001 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition.

              Angiogenic growth factors such as fibroblast growth factors (FGFs) and vascular endothelial growth factors (VEGFs) are currently targets of intense efforts to inhibit deregulated blood vessel formation in diseases such as cancer. FGFs and VEGFs exert their effects via specific binding to cell surface-expressed receptors equipped with tyrosine kinase activity. Activation of the receptor kinase activity allows coupling to downstream signal transduction pathways that regulate proliferation, migration and differentiation of endothelial cells. Inhibitors of FGF and VEGF signalling are currently in clinical trials. In this article, the current knowledge of FGF- and VEGF-induced signal transduction that leads to specific biological responses will be summarized. Furthermore, the manner in which this knowledge is being exploited to regulate angiogenesis will be discussed.
                Bookmark

                Author and article information

                Journal
                Trends in Biochemical Sciences
                Trends in Biochemical Sciences
                Elsevier BV
                09680004
                October 2002
                October 2002
                : 27
                : 10
                : 514-520
                Article
                10.1016/S0968-0004(02)02179-5
                12368087
                70c958e7-4a12-4e05-ac8c-7d04b450d5eb
                © 2002

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article