1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chromosome‐level genomes of two armyworms, Mythimna separata and Mythimna loreyi, provide insights into the biosynthesis and reception of sex pheromones

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mythimna separata and Mythimna loreyi are global pests of gramineous cereals, heavily controlled with synthetic insecticides. Here, we generated two high‐quality chromosome‐level genome assemblies for M. separata (688 Mb) and M. loreyi (683 Mb). Our analysis identified Z and W chromosomes, with few genes and abundant transposable elements (TEs) found on the W chromosome. We also observed a recent explosion of long interspersed nuclear elements (LINEs), which contributed to the larger genomes of Mythimna. The two armyworms diverged ~10.5 MYA, with only three chromosomes have intrachromosomal rearrangements. Additionally, we observed a tandem repeat expansion of α‐amylase genes in Mythimna, which may promote the digestion of carbohydrates and exacerbate their damage to crops. Furthermore, we inferred the sex pheromone biosynthesis pathway for M. separata, M. loreyi and Spodoptera frugiperda. We discovered that M. loreyi and S. frugiperda synthesized the same major constituents of sex pheromones through different pathways. Specifically, the double bonds in the dominant sex pheromone components of S. frugiperda were generated by Δ9‐ and Δ11‐desaturase, while they were generated by Δ11‐desaturase and chain‐shortening reactions in M. loreyi. We also identified pheromone receptor (PR) genes and inferred their corresponding components. These findings provide a better understanding of sex pheromone communication and promote the development of a new pest control strategy involving pheromone traps, which are more effective and environmentally friendly than current strategies.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

          In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

            We report a major update of the MAFFT multiple sequence alignment program. This version has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update. This report shows actual examples to explain how these features work, alone and in combination. Some examples incorrectly aligned by MAFFT are also shown to clarify its limitations. We discuss how to avoid misalignments, and our ongoing efforts to overcome such limitations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              fastp: an ultra-fast all-in-one FASTQ preprocessor

              Abstract Motivation Quality control and preprocessing of FASTQ files are essential to providing clean data for downstream analysis. Traditionally, a different tool is used for each operation, such as quality control, adapter trimming and quality filtering. These tools are often insufficiently fast as most are developed using high-level programming languages (e.g. Python and Java) and provide limited multi-threading support. Reading and loading data multiple times also renders preprocessing slow and I/O inefficient. Results We developed fastp as an ultra-fast FASTQ preprocessor with useful quality control and data-filtering features. It can perform quality control, adapter trimming, quality filtering, per-read quality pruning and many other operations with a single scan of the FASTQ data. This tool is developed in C++ and has multi-threading support. Based on our evaluation, fastp is 2–5 times faster than other FASTQ preprocessing tools such as Trimmomatic or Cutadapt despite performing far more operations than similar tools. Availability and implementation The open-source code and corresponding instructions are available at https://github.com/OpenGene/fastp.
                Bookmark

                Author and article information

                Contributors
                Journal
                Molecular Ecology Resources
                Molecular Ecology Resources
                Wiley
                1755-098X
                1755-0998
                August 2023
                May 07 2023
                August 2023
                : 23
                : 6
                : 1423-1441
                Affiliations
                [1 ] Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences Shenzhen China
                [2 ] State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
                Article
                10.1111/1755-0998.13809
                37150957
                703e2c53-d055-4f9c-b486-4902cedac4bd
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article