2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A specimen of Curculioninae (Curculionidae, Coleoptera) from the Lower Cretaceous, Araripe Basin, north-eastern Brazil : A NEW GENUS AND SPECIES OF CURCULIONINAE

      , ,
      Palaeontology
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Temporal lags and overlap in the diversification of weevils and flowering plants.

          The extraordinary diversity of herbivorous beetles is usually attributed to coevolution with angiosperms. However, the degree and nature of contemporaneity in beetle and angiosperm diversification remain unclear. Here we present a large-scale molecular phylogeny for weevils (herbivorous beetles in the superfamily Curculionoidea), one of the most diverse lineages of insects, based on approximately 8 kilobases of DNA sequence data from a worldwide sample including all families and subfamilies. Estimated divergence times derived from the combined molecular and fossil data indicate diversification into most families occurred on gymnosperms in the Jurassic, beginning approximately 166 Ma. Subsequent colonization of early crown-group angiosperms occurred during the Early Cretaceous, but this alone evidently did not lead to an immediate and major diversification event in weevils. Comparative trends in weevil diversification and angiosperm dominance reveal that massive diversification began in the mid-Cretaceous (ca. 112.0 to 93.5 Ma), when angiosperms first rose to widespread floristic dominance. These and other evidence suggest a deep and complex history of coevolution between weevils and angiosperms, including codiversification, resource tracking, and sequential evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular and morphological phylogenetics of weevils (coleoptera, curculionoidea): do niche shifts accompany diversification?

            The main goals of this study were to provide a robust phylogeny for the families of the superfamily Curculionoidea, to discover relationships and major natural groups within the family Curculionidae, and to clarify the evolution of larval habits and host-plant associations in weevils to analyze their role in weevil diversification. Phylogenetic relationships among the weevils (Curculionoidea) were inferred from analysis of nucleotide sequences of 18S ribosomal DNA (rDNA; approximately 2,000 bases) and 115 morphological characters of larval and adult stages. A worldwide sample of 100 species was compiled to maximize representation of weevil morphological and ecological diversity. All families and the main subfamilies of Curculionoidea were represented. The family Curculionidae sensu lato was represented by about 80 species in 30 "subfamilies" of traditional classifications. Phylogenetic reconstruction was accomplished by parsimony analysis of separate and combined molecular and morphological data matrices and Bayesian analysis of the molecular data; tree topology support was evaluated. Results of the combined analysis of 18S rDNA and morphological data indicate that monophyly of and relationships among each of the weevil families are well supported with the topology ((Nemonychidae, Anthribidae) (Belidae (Attelabidae (Caridae (Brentidae, Curculionidae))))). Within the clade Curculionidae sensu lato, the basal positions are occupied by mostly monocot-associated taxa with the primitive type of male genitalia followed by the Curculionidae sensu stricto, which is made up of groups with the derived type of male genitalia. High support values were found for the monophyly of some distinct curculionid groups such as Dryophthorinae (several tribes represented) and Platypodinae (Tesserocerini plus Platypodini), among others. However, the subfamilial relationships in Curculionidae are unresolved or weakly supported. The phylogeny estimate based on combined 18S rDNA and morphological data suggests that diversification in weevils was accompanied by niche shifts in host-plant associations and larval habits. Pronounced conservatism is evident in larval feeding habits, particularly in the host tissue consumed. Multiple shifts to use of angiosperms in Curculionoidea were identified, each time associated with increases in weevil diversity and subsequent shifts back to gymnosperms, particularly in the Curculionidae.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toward a new synthesis: major evolutionary trends in the angiosperm fossil record.

              D Dilcher (2000)
              Angiosperm paleobotany has widened its horizons, incorporated new techniques, developed new databases, and accepted new questions that can now focus on the evolution of the group. The fossil record of early flowering plants is now playing an active role in addressing questions of angiosperm phylogeny, angiosperm origins, and angiosperm radiations. Three basic nodes of angiosperm radiations are identified: (i) the closed carpel and showy radially symmetrical flower, (ii) the bilateral flower, and (iii) fleshy fruits and nutritious nuts and seeds. These are all coevolutionary events and spread out through time during angiosperm evolution. The proposal is made that the genetics of the angiosperms pressured the evolution of the group toward reproductive systems that favored outcrossing. This resulted in the strongest selection in the angiosperms being directed toward the flower, fruits, and seeds. That is why these organs often provide the best systematic characters for the group.
                Bookmark

                Author and article information

                Journal
                Palaeontology
                Wiley
                00310239
                July 2011
                July 2011
                July 14 2011
                : 54
                : 4
                : 807-814
                Article
                10.1111/j.1475-4983.2011.01057.x
                6feecad1-c299-4e9a-bb3a-eabf7830eeb4
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article